%@4.符号矩阵与数值矩阵的转换 % ※将数值矩阵转化为符号矩阵 % 函数调用格式:sym(A) A=[1/3,2.5;1/0.7,2/5] % A = % 0.3333 2.5000 % 1.4286 0.4000 B=sym(A) % ans = % [ 1/3, 5/2] % [10/7, 2/5] % ※将符号矩阵转化为数值矩阵 % 函数调用格式: numeric(A) % B = % [ 1/3, 5/2] % [10/7, 2/5] %numeric(B) 这个函数不存在了 VPA(B,4) %发现这个函数可用 % R = VPA(S) numerically evaluates each element of the double matrix % S using variable precision floating point arithmetic with D decimal % digit accuracy, where D is the current setting of DIGITS. % The resulting R is a SYM. % % VPA(S,D) uses D digits, instead of the current setting of DIGITS. % D is an integer or the SYM representation of a number. % ans = % [ .3333, 2.500] % [ 1.429, .4000] %% 符号运算
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%4.查找符号变量 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % findsym(expr) 按字母顺序列出符号表达式 expr 中的所有符号变量 % % findsym(expr, N) 列出 expr 中离 x 最近的 N 个符号变量 % 若表达式中有两个符号变量与 x 的距离相等,则ASCII 码大者优先。 % ※常量 pi, i, j 不作为符号变量 % 例: f=sym('2*w-3*y+z^2+5*a'); findsym(f) % ans = % a, w, y, z findsym(f,3) % ans = % y,w,z findsym(f,1) % ans = % y %% 计算极限
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%5.计算极限 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % limit(f,x,a): 计算f(x)当x趋向于a的极限 % limit(f,a): 当默认变量趋向于 a 时的极限 % limit(f): 计算 a=0 时的极限 % limit(f,x,a,'right'): 计算右极限 % limit(f,x,a,'left'): 计算左极限 % 例:计算 syms x h n; L=limit((log(x+h)-log(x))/h,h,0) % L = % 1/x M=limit((1-x/n)^n,n,inf) % M = % exp(-x) %% 计算导数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%6.计算导数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % g=diff(f,v):求符号表达式 f 关于 v 的导数 % g=diff(f):求符号表达式 f 关于默认变量的导数 % g=diff(f,v,n):求 f 关于 v 的 n 阶导数 syms x; f=sin(x)+3*x^2; g=diff(f,x) % g = % cos(x)+6*x %%计算积分
文章评论(0条评论)
登录后参与讨论