自己不学射频,只是由于项目需要,临时参与了一段时间Zigbee通信模块原理图和PCB设计,在设计过程中由于惯性思维导致了升版,付出了沉重的代价。
需求要求协调器和单个节点间的通信视距要达到100m以上。Zigbee是基于IEEE802.15.4标准的低功耗局域网协议,工作在2.4GHz和868/915MHz频段,具有短距离、低复杂度、自组织、低功耗、低数据速率(<250kbps)等特点。
Zigbee通信模块选用的TI公司集成Zigbee/RF4CE/IEEE协议栈的MCU芯片CC2530,支持低功耗模式,射频接收灵敏度高达-97dBm,额定发射功率为4.5dBm,所用天线的中心频率为2.4GHz,最大增益1.5dBi,驻波比<2。根据TI的参考电路和PCB绘制建议,完成电路设计,如图1所示:
通过调节匹配电路参数,最后用射频分析仪测试出发射功率接近4.5dBm。于是在空旷场所进行实测,测试视距仅有30m左右,远远不能达到100m要求。限于结构,不能使用更大增益的天线。于是最终考虑添加射频功放,不过个人觉得这样也使得Zigbee通信的低功耗优势不再。
TI提供了与CC2530配套使用的射频功放CC2591,可使射频功率提高至20dBm,消耗电流小于166mA,;即使无功率输出时,也有最大50mA的电流消耗。射频接收增益分为高增益模式和低增益模式,在高增益模式下,接收增益为11dB,消耗电流最大4mA,噪声系数为4.8dB;在低增益模式下,接收增益为1dB,消耗电流最大2mA。CC2591控制引脚包括HGM、PA_EN、EN,HGM用于控制RX的增益模式,PA_EN和EN用于控制RX模式、TX模式及低功耗模式的切换,按照TI的参考原理图将这些控制引脚接至CC2530的相应GPIO,这样便可以直接利用Z-stack进行驱动设计,否则会带来软件上的更改。CC2591的电路原理设计如图2所示:
用户1393808 2015-4-2 09:48
marching_zhan_607749147 2015-3-16 10:27
用户440006 2015-3-13 09:23