为了充分利用 Linux 操作系统,原始设备制造商(OEM)可选择与商用 Linux 供应商合作,或在内部增添工程能力。这两种模式都已被证明是成功的,但是每种做法都需各自的成本。
不管 OEM 如何选择,他们的工程师所使用的典型调试模型都是相同的:基于 GDB(GNU Debugger)的客户服务器环境。如图1所示,它描述了在调试目标时,附加并运行在每个 Linux 进程中的 GDBSERVER 例示。每个 GDBSERVER 都通过一个以太网端口与主机通信。
另外,需要特别注意的是,采用这种调试方法,标准 Linux内核被替换成一种“静态”版本。仅有少数例外,所有通过 KGDB的目标调试通信都被限制在 RS232 串行链路。
这种方法给开发人员带来了另一个挑战,即要使用 Linux内核的测试版(instrumented version)。虽然这是可接受的默认Linux调试环境,但这种方法有一些很明确的局限性。例如,采用多进程组成的应用,需要多个 GDBSERVER 运行于有限的目标存储器上。这可能影响被调试目标的性能,在一些情况下目标性能可降低50%以上。
即使在所有的内核工具和通信通道均可用的最佳情形下,仍有一些区域的代码在这个调试范例下难以到达。图2中说明的“问题”区域给内核和应用程序开发人员提出了更多挑战。这些区域包括每个进程下大量的线程,以及代码独立和数据位置独立的内核可加载模块。尽管对于熟练的开发人员来说,有可能利用现有技术合成一个环境,来满足这些区域的调试需要,但是这种环境对用户非常不友好,且在负载下无法扩展。
接下来我们看看在Linux 内核可加载模块的例子中,模块加载时间调用的初始化程序由哪些部分组成。目前的调试范例表明加载了这些模块,然后利用调试器对其代码和数据偏移进行调整(手动和自动)。但是,这时模块的初始化代码已经执行了,无法在代码所在区域对问题进行调试。另一个使用情形涉及共享库,这经常无法由 GDBSERVER 或其他类似程序很好地处理。即使存在这些问题,许多工程师仍在采用 printf(用户空间)和 printk(内核空间)作为主要调试帮助。一些调试“工具”带来新的软件问题或可能掩盖现有的问题。
Arriba Debugger全面解决嵌入式Linux调试问题
Arriba Debugger从一开始就计划为调试嵌入式 Linux 提供全面方案。VMON2取代了GDBSERVER 和 KGDB,是一种运行于嵌入式 Linux 目标的、动态可加载、基于需求的调试代理。通过与主机上的 Arriba Debugger 通信,从用户级线程到静态内核,VMON2 可实现 Linux 目标完全可视性。VMON2的存储器占位面积很小,即使在加载时,它对运行系统的性能影响也几乎无法觉察。VMON2 在目标上的空间小于 250KB,能通过单以太网连接到目标平台进行端到端的调试。
图3: Arriba 解决方案。
问题 1 – 可加载模块
通过 Arriba Debugger,当某一特性的内核模块加载到目标时,VMON2 可进行配置,并向主机发送信号。接到这个信号后,Arriba Debugger 会自动且正确地加载各自模块的符号信息,并对模块初始化功能的入口点进行位置控制。现在,用户可以通过高速以太网连接对有问题的模块进行充分调试控制。与传统Linux内核和模块的调试不同,VMON2不预先占用内核,这对于以多数据和媒体为中心的应用而言非常关键。
文章评论(0条评论)
登录后参与讨论