原创 u-boot 分析 - [嵌入式Linux系统开发技术详解-基于ARM] [转载]

2009-9-6 22:43 3009 4 4 分类: MCU/ 嵌入式
原文地址 http://szricky.blog.hexun.com/7474976_d.html

6.1  Bootloader


对于计算机系统来说,从开机上电到操作系统启动需要一个引导过程。嵌入式Linux系统同样离不开引导程序,这个引导程序就叫作Bootloader


6.1.1  Bootloader介绍


Bootloader是在操作系统运行之前执行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射表,从而建立适当的系统软硬件环境,为最终调用操作系统内核做好准备。


对于嵌入式系统,Bootloader是基于特定硬件平台来实现的。因此,几乎不可能为所有的嵌入式系统建立一个通用的Bootloader,不同的处理器架构都有不同的BootloaderBootloader不但依赖于CPU的体系结构,而且依赖于嵌入式系统板级设备的配置。对于2块不同的嵌入式板而言,即使它们使用同一种处理器,要想让运行在一块板子上的Bootloader程序也能运行在另一块板子上,一般也都需要修改Bootloader的源程序。


反过来,大部分Bootloader仍然具有很多共性,某些Bootloader也能够支持多种体系结构的嵌入式系统。例如,U-Boot就同时支持PowerPCARMMIPSX86等体系结构,支持的板子有上百种。通常,它们都能够自动从存储介质上启动,都能够引导操作系统启动,并且大部分都可以支持串口和以太网接口。


本章将对各种Bootloader总结分类,分析它们的共同特点。以U-Boot为例,详细讨论Bootloader的设计与实现。


6.1.2  Bootloader的启动


Linux系统是通过Bootloader引导启动的。一上电,就要执行Bootloader来初始化系统。可以通过第4章的Linux启动过程框图回顾一下。


系统加电或复位后,所有CPU都会从某个地址开始执行,这是由处理器设计决定的。比如,X86的复位向量在高地址端,ARM处理器在复位时从地址0x00000000取第一条指令。嵌入式系统的开发板都要把板上ROMFlash映射到这个地址。因此,必须把Bootloader程序存储在相应的Flash位置。系统加电后,CPU将首先执行它。


主机和目标机之间一般有串口可以连接,Bootloader软件通常会通过串口来输入输出。例如:输出出错或者执行结果信息到串口终端,从串口终端读取用户控制命令等。


Bootloader启动过程通常是多阶段的,这样既能提供复杂的功能,又有很好的可移植性。例如:从Flash启动的Bootloader多数是两阶段的启动过程。从后面U-Boot的内容可以详细分析这个特性。


大多数Bootloader都包含2种不同的操作模式:本地加载模式和远程下载模式。这2种操作模式的区别仅对于开发人员才有意义,也就是不同启动方式的使用。从最终用户的角度看,Bootloader的作用就是用来加载操作系统,而并不存在所谓的本地加载模式与远程下载模式的区别。


因为Bootloader的主要功能是引导操作系统启动,所以我们详细讨论一下各种启动方式的特点。


1.网络启动方式


这种方式开发板不需要配置较大的存储介质,跟无盘工作站有点类似。但是使用这种启动方式之前,需要把Bootloader安装到板上的EPROM或者Flash中。Bootloader通过以太网接口远程下载Linux内核映像或者文件系统。第4章介绍的交叉开发环境就是以网络启动方式建立的。这种方式对于嵌入式系统开发来说非常重要。


使用这种方式也有前提条件,就是目标板有串口、以太网接口或者其他连接方式。串口一般可以作为控制台,同时可以用来下载内核影像和RAMDISK文件系统。串口通信传输速率过低,不适合用来挂接NFS文件系统。所以以太网接口成为通用的互连设备,一般的开发板都可以配置10M以太网接口。


对于PDA等手持设备来说,以太网的RJ-45接口显得大了些,而USB接口,特别是USB的迷你接口,尺寸非常小。对于开发的嵌入式系统,可以把USB接口虚拟成以太网接口来通讯。这种方式在开发主机和开发板两端都需要驱动程序。


另外,还要在服务器上配置启动相关网络服务。Bootloader下载文件一般都使用TFTP网络协议,还可以通过DHCP的方式动态配置IP地址。


DHCP/BOOTP服务为Bootloader分配IP地址,配置网络参数,然后才能够支持网络传输功能。如果Bootloader可以直接设置网络参数,就可以不使用DHCP


TFTP服务为Bootloader客户端提供文件下载功能,把内核映像和其他文件放在/tftpboot目录下。这样Bootloader可以通过简单的TFTP协议远程下载内核映像到内存。如图6.1所示。



6.1  网络启动示意图


大部分引导程序都能够支持网络启动方式。例如:BIOSPXEPreboot Execution Environment)功能就是网络启动方式;U-Boot也支持网络启动功能。


2.磁盘启动方式


传统的Linux系统运行在台式机或者服务器上,这些计算机一般都使用BIOS引导,并且使用磁盘作为存储介质。如果进入BIOS设置菜单,可以探测处理器、内存、硬盘等设备,可以设置BIOS从软盘、光盘或者某块硬盘启动。也就是说,BIOS并不直接引导操作系统。那么在硬盘的主引导区,还需要一个Bootloader。这个Bootloader可以从磁盘文件系统中把操作系统引导起来。


Linux传统上是通过LILOLInux LOader)引导的,后来又出现了GNU的软件GRUBGRand Unified Bootloader)。这2Bootloader广泛应用在X86Linux系统上。你的开发主机可能就使用了其中一种,熟悉它们有助于配置多种系统引导功能。


LILO软件工程是由Werner Almesberger创建,专门为引导Linux开发的。现在LILO的维护者是John Coffman,最新版本下载站点:http://lilo.go.dyndns.orgLILO有详细的文档,例如LILO套件中附带使用手册和参考手册。此外,还可以在LDP的“LILO mini-HOWTO”中找到LILO的使用指南。


GRUBGNU计划的主要bootloaderGRUB最初是由Erich BoleynGNU Mach操作系统撰写的引导程序。后来有Gordon MatzigkeitOkuji Yoshinori接替Erich的工作,继续维护和开发GRUBGRUB的网站http://www.gnu.org/software/grub/上有对套件使用的说明文件,叫作《GRUB manual》。GRUB能够使用TFTPBOOTP或者DHCP通过网络启动,这种功能对于系统开发过程很有用。


除了传统的Linux系统上的引导程序以外,还有其他一些引导程序,也可以支持磁盘引导启动。例如:LoadLin可以从DOS下启动Linux;还有ROLOLinuxBIOSU-Boot也支持这种功能。


3Flash启动方式


大多数嵌入式系统上都使用Flash存储介质。Flash有很多类型,包括NOR FlashNAND Flash和其他半导体盘。其中,NOR Flash(也就是线性Flash)使用最为普遍。


NOR Flash可以支持随机访问,所以代码是可以直接在Flash上执行的。Bootloader一般是存储在Flash芯片上的。另外,Linux内核映像和RAMDISK也可以存储在Flash上。通常需要把Flash分区使用,每个区的大小应该是Flash擦除块大小的整数倍。图6.2Bootloader和内核映像以及文件系统的分区表。



6.2  Flash存储示意图


Bootloader一般放在Flash的底端或者顶端,这要根据处理器的复位向量设置。要使Bootloader的入口位于处理器上电执行第一条指令的位置。


接下来分配参数区,这里可以作为Bootloader的参数保存区域。


再下来内核映像区。Bootloader引导Linux内核,就是要从这个地方把内核映像解压到RAM中去,然后跳转到内核映像入口执行。


然后是文件系统区。如果使用Ramdisk文件系统,则需要Bootloader把它解压到RAM中。如果使用JFFS2文件系统,将直接挂接为根文件系统。这两种文件系统将在第12章详细讲解。


最后还可以分出一些数据区,这要根据实际需要和Flash大小来考虑了。


这些分区是开发者定义的,Bootloader一般直接读写对应的偏移地址。到了Linux内核空间,可以配置成MTD设备来访问Flash分区。但是,有的Bootloader也支持分区的功能,例如:Redboot可以创建Flash分区表,并且内核MTD驱动可以解析出redboot的分区表。


除了NOR Flash,还有NAND FlashCompact FlashDiskOnChip等。这些Flash具有芯片价格低,存储容量大的特点。但是这些芯片一般通过专用控制器的I/O方式来访问,不能随机访问,因此引导方式跟NOR Flash也不同。在这些芯片上,需要配置专用的引导程序。通常,这种引导程序起始的一段代码就把整个引导程序复制到RAM中运行,从而实现自举启动,这跟从磁盘上启动有些相似。


6.1.3  Bootloader的种类


嵌入式系统世界已经有各种各样的Bootloader,种类划分也有多种方式。除了按照处理器体系结构不同划分以外,还有功能复杂程度的不同。


首先区分一下“Bootloader”和“Monitor”的概念。严格来说,“Bootloader”只是引导设备并且执行主程序的固件;而“Monitor”还提供了更多的命令行接口,可以进行调试、读写内存、烧写Flash、配置环境变量等。“Monitor”在嵌入式系统开发过程中可以提供很好的调试功能,开发完成以后,就完全设置成了一个“Bootloader”。所以,习惯上大家把它们统称为Bootloader


6.1列出了Linux的开放源码引导程序及其支持的体系结构。表中给出了X86 ARM PowerPC体系结构的常用引导程序,并且注明了每一种引导程序是不是“Monitor”。


6.1                                                   开放源码的Linux 引导程序




Bootloader


Monitor


   


x86


ARM


PowerPC


LILO



Linux磁盘引导程序





GRUB



GNULILO替代程序





Loadlin



DOS引导Linux





ROLO



ROM引导Linux而不需要BIOS





Etherboot



通过以太网卡启动Linux系统的固件





LinuxBIOS



完全替代BUISLinux引导程序





BLOB



LART等硬件平台的引导程序





U-boot



通用引导程序





RedBoot



基于eCos的引导程序





 


对于每种体系结构,都有一系列开放源码Bootloader可以选用。


1X86


X86的工作站和服务器上一般使用LILOGRUBLILOLinux发行版主流的Bootloader。不过Redhat Linux发行版已经使用了GRUBGRUBLILO有更有好的显示界面,使用配置也更加灵活方便。


在某些X86嵌入式单板机或者特殊设备上,会采用其他Bootloader,例如:ROLO。这些Bootloader可以取代BIOS的功能,能够从FLASH中直接引导Linux启动。现在ROLO支持的开发板已经并入U-Boot,所以U-Boot也可以支持X86平台。


2ARM


ARM处理器的芯片商很多,所以每种芯片的开发板都有自己的Bootloader。结果ARM bootloader也变得多种多样。最早有为ARM720处理器的开发板的固件,又有了armbootStrongARM平台的blob,还有S3C2410处理器开发板上的vivi等。现在armboot已经并入了U-Boot,所以U-Boot也支持ARM/XSCALE平台。U-Boot已经成为ARM平台事实上的标准Bootloader


3PowerPC


PowerPC平台的处理器有标准的Bootloader,就是ppcbootPPCBOOT在合并armboot等之后,创建了U-Boot,成为各种体系结构开发板的通用引导程序。U-Boot仍然是PowerPC平台的主要Bootloader


4MIPS


MIPS公司开发的YAMON是标准的Bootloader,也有许多MIPS芯片商为自己的开发板写了Bootloader。现在,U-Boot也已经支持MIPS平台。


5SH


SH平台的标准Bootloadersh-bootRedboot在这种平台上也很好用。


6M68K


M68K平台没有标准的BootloaderRedboot能够支持m68k系列的系统。


值得说明的是Redboot,它几乎能够支持所有的体系结构,包括MIPSSHM68K等体系结构。Redboot是以eCos为基础,采用GPL许可的开源软件工程。现在由core eCos的开发人员维护,源码下载网站是http://www.ecoscentric.com/snapshotsRedboot的文档也相当完善,有详细的使用手册《RedBoot User’s Guide》。


6.2.1  U-Boot工程简介


最早,DENX软件工程中心的Wolfgang Denk基于8xxrom的源码创建了PPCBOOT工程,并且不断添加处理器的支持。后来,Sysgo Gmbhppcboot移植到ARM平台上,创建了ARMboot工程。然后以ppcboot工程和armboot工程为基础,创建了U-Boot工程。


现在U-Boot已经能够支持PowerPCARMX86MIPS体系结构的上百种开发板,已经成为功能最多、灵活性最强并且开发最积极的开放源码Bootloader。目前仍然由DENXWolfgang Denk维护。


U-Boot的源码包可以从sourceforge网站下载,还可以订阅该网站活跃的U-Boot Users邮件论坛,这个邮件论坛对于U-Boot的开发和使用都很有帮助。


U-Boot软件包下载网站:http://sourceforge.net/project/u-boot


U-Boot邮件列表网站:http://lists.sourceforge.net/lists/listinfo/u-boot-users/


DENX相关的网站:http://www.denx.de/re/DPLG.html


6.2.2  U-Boot源码结构


从网站上下载得到U-Boot源码包,例如:U-Boot-1.1.2.tar.bz2


解压就可以得到全部U-Boot源程序。在顶层目录下有18个子目录,分别存放和管理不同的源程序。这些目录中所要存放的文件有其规则,可以分为3类。


·  1类目录与处理器体系结构或者开发板硬件直接相关;


·  2类目录是一些通用的函数或者驱动程序;


·  3类目录是U-Boot的应用程序、工具或者文档。


6.2列出了U-Boot顶层目录下各级目录存放原则。


6.2                                                  U-Boot的源码顶层目录说明




   


   



board


平台依赖


存放电路板相关的目录文件,例如:RPXlite(mpc8xx)smdk2410(arm920t)sc520_cdp(x86) 等目录


cpu


平台依赖


存放CPU相关的目录文件,例如:mpc8xxppc4xxarm720tarm920t xscalei386等目录


lib_ppc


平台依赖


存放对PowerPC体系结构通用的文件,主要用于实现PowerPC平台通用的函数


   


   



lib_arm


平台依赖


存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数


lib_i386


平台依赖


存放对X86体系结构通用的文件,主要用于实现X86平台通用的函数


include


通用


头文件和开发板配置文件,所有开发板的配置文件都在configs目录下


common


通用


通用的多功能函数实现


lib_generic


通用


通用库函数的实现


Net


通用


存放网络的程序


Fs


通用


存放文件系统的程序


Post


通用


存放上电自检程序


drivers


通用


通用的设备驱动程序,主要有以太网接口的驱动


Disk


通用


硬盘接口程序


Rtc


通用


RTC的驱动程序


Dtt


通用


数字温度测量器或者传感器的驱动


examples


应用例程


一些独立运行的应用程序的例子,例如helloworld


tools


工具


存放制作S-Record 或者 U-Boot格式的映像等工具,例如mkimage


Doc


文档


开发使用文档


 


U-Boot的源代码包含对几十种处理器、数百种开发板的支持。可是对于特定的开发板,配置编译过程只需要其中部分程序。这里具体以S3C2410 arm920t处理器为例,具体分析S3C2410处理器和开发板所依赖的程序,以及U-Boot的通用函数和工具。


6.2.3  U-Boot的编译


U-Boot的源码是通过GCCMakefile组织编译的。顶层目录下的Makefile首先可以设置开发板的定义,然后递归地调用各级子目录下的Makefile,最后把编译过的程序链接成U-Boot映像。


1.顶层目录下的Makefile


它负责U-Boot整体配置编译。按照配置的顺序阅读其中关键的几行。


每一种开发板在Makefile都需要有板子配置的定义。例如smdk2410开发板的定义如下。


 


smdk2410_config :   unconfig


     @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0


 


执行配置U-Boot的命令make smdk2410_config,通过./mkconfig脚本生成include/config.
mk
的配置文件。文件内容正是根据Makefile对开发板的配置生成的。


 


ARCH   = arm


CPU    = arm920t


BOARD  = smdk2410


SOC    = s3c24x0


 


上面的include/config.mk文件定义了ARCHCPUBOARDSOC这些变量。这样硬件平台依赖的目录文件可以根据这些定义来确定。SMDK2410平台相关目录如下。


board/smdk2410/


cpu/arm920t/


cpu/arm920t/s3c24x0/


lib_arm/


include/asm-arm/


include/configs/smdk2410.h


再回到顶层目录的Makefile文件开始的部分,其中下列几行包含了这些变量的定义。


 


# load ARCH, BOARD, and CPU configuration


include include/config.mk


export       ARCH CPU BOARD VENDOR SOC


 


Makefile的编译选项和规则在顶层目录的config.mk文件中定义。各种体系结构通用的规则直接在这个文件中定义。通过ARCHCPUBOARDSOC等变量为不同硬件平台定义不同选项。不同体系结构的规则分别包含在ppc_config.mkarm_config.mkmips_config.mk等文件中。


顶层目录的Makefile中还要定义交叉编译器,以及编译U-Boot所依赖的目标文件。


 


ifeq ($(ARCH),arm)


CROSS_COMPILE = arm-linux-          //交叉编译器的前缀


#endif


export  CROSS_COMPILE



# U-Boot objects....order is important (i.e. start must be first)


OBJS  = cpu/$(CPU)/start.o                  //处理器相关的目标文件



LIBS  = lib_generic/libgeneric.a            //定义依赖的目录,每个目录下先把目标文件连接成*.a文件。


LIBS += board/$(BOARDDIR)/lib$(BOARD).a


LIBS += cpu/$(CPU)/lib$(CPU).a


ifdef SOC


LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a


endif


LIBS += lib_$(ARCH)/lib$(ARCH).a



 


然后还有U-Boot映像编译的依赖关系。


 


ALL = u-boot.srec u-boot.bin System.map


all:        $(ALL)


u-boot.srec:    u-boot


            $(OBJCOPY) ${OBJCFLAGS} -O srec $< $@


u-boot.bin: u-boot


            $(OBJCOPY) ${OBJCFLAGS} -O binary $< $@


……


u-boot:         depend $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT)


            UNDEF_SYM='$(OBJDUMP) -x $(LIBS) \


            |sed  -n -e 's/.*\(__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\


            $(LD) $(LDFLAGS) $$UNDEF_SYM $(OBJS) \


                 --start-group $(LIBS) $(PLATFORM_LIBS) --end-group \


                 -Map u-boot.map -o u-boot


 


Makefile缺省的编译目标为all,包括u-boot.srecu-boot.binSystem.mapu-boot.srecu-boot.bin又依赖于U-BootU-Boot就是通过ld命令按照u-boot.map地址表把目标文件组装成u-boot


其他Makefile内容就不再详细分析了,上述代码分析应该可以为阅读代码提供了一个线索。


2.开发板配置头文件


除了编译过程Makefile以外,还要在程序中为开发板定义配置选项或者参数。这个头文件是include/configs/<board_name>.h<board_name>用相应的BOARD定义代替。


这个头文件中主要定义了两类变量。


一类是选项,前缀是CONFIG_,用来选择处理器、设备接口、命令、属性等。例如:


 


#define   CONFIG_ARM920T         1


#define   CONFIG_DRIVER_CS8900  1


 


另一类是参数,前缀是CFG_,用来定义总线频率、串口波特率、Flash地址等参数。例如:


 


#define     CFG_FLASH_BASE      0x00000000


#define CFG_PROMPT          "=>"


3.编译结果


根据对Makefile的分析,编译分为2步。第1步配置,例如:make smdk2410_config;第2步编译,执行make就可以了。


编译完成后,可以得到U-Boot各种格式的映像文件和符号表,如表6.3所示。


6.3                                                  U-Boot编译生成的映像文件





   



   


System.map


U-Boot映像的符号表


u-boot.bin


U-Boot映像原始的二进制格式


u-boot


U-Boot映像的ELF格式


u-boot.srec


U-Boot映像的S-Record格式


 


U-Boot3种映像格式都可以烧写到Flash中,但需要看加载器能否识别这些格式。一般u-boot.bin最为常用,直接按照二进制格式下载,并且按照绝对地址烧写到Flash中就可以了。U-Bootu-boot.srec格式映像都自带定位信息。


4U-Boot工具


tools目录下还有些U-Boot的工具。这些工具有的也经常用到。表6.4说明了几种工具的用途。


6.4                                                              U-Boot的工具





   



   


bmp_logo


制作标记的位图结构体


img2srec


转换SREC格式映像


envcrc


校验u-boot内部嵌入的环境变量


mkimage


转换U-Boot格式映像


gen_eth_addr


生成以太网接口MAC地址


updater


U-Boot自动更新升级工具


 


这些工具都有源代码,可以参考改写其他工具。其中mkimage是很常用的一个工具,Linux内核映像和ramdisk文件系统映像都可以转换成U-Boot的格式。


6.2.4  U-Boot的移植


U-Boot能够支持多种体系结构的处理器,支持的开发板也越来越多。因为Bootloader是完全依赖硬件平台的,所以在新电路板上需要移植U-Boot程序。


开始移植U-Boot之前,先要熟悉硬件电路板和处理器。确认U-Boot是否已经支持新开发板的处理器和I/O设备。假如U-Boot已经支持一块非常相似的电路板,那么移植的过程将非常简单。


移植U-Boot工作就是添加开发板硬件相关的文件、配置选项,然后配置编译。


开始移植之前,需要先分析一下U-Boot已经支持的开发板,比较出硬件配置最接近的开发板。选择的原则是,首先处理器相同,其次处理器体系结构相同,然后是以太网接口等外围接口。还要验证一下这个参考开发板的U-Boot,至少能够配置编译通过。


S3C2410处理器的开发板为例,U-Boot-1.1.2版本已经支持SMDK2410开发板。我们可以基于SMDK2410移植,那么先把SMDK2410编译通过。


我们以S3C2410开发板fs2410为例说明。移植的过程参考SMDK2410开发板,SMDK2410U-Boot-1.1.2中已经支持。


移植U-Boot的基本步骤如下。


1)在顶层Makefile中为开发板添加新的配置选项,使用已有的配置项目为例。


 


smdk2410_config   :       unconfig


         @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0


 


参考上面2行,添加下面2行。


 


fs2410_config   :       unconfig


      @./mkconfig $(@:_config=) arm arm920t fs2410 NULL s3c24x0


 


2)创建一个新目录存放开发板相关的代码,并且添加文件。


board/fs2410/config.mk


board/fs2410/flash.c


board/fs2410/fs2410.c


board/fs2410/Makefile


board/fs2410/memsetup.S


board/fs2410/u-boot.lds


3)为开发板添加新的配置文件


可以先复制参考开发板的配置文件,再修改。例如:


$cp include/configs/smdk2410.h  include/configs/fs2410.h


如果是为一颗新的CPU移植,还要创建一个新的目录存放CPU相关的代码。


4)配置开发板


$ make fs2410_config


5)编译U-Boot


执行make命令,编译成功可以得到U-Boot映像。有些错误是跟配置选项是有关系的,通常打开某些功能选项会带来一些错误,一开始可以尽量跟参考板配置相同。


6)添加驱动或者功能选项


在能够编译通过的基础上,还要实现U-Boot的以太网接口、Flash擦写等功能。


对于FS2410开发板的以太网驱动和smdk2410完全相同,所以可以直接使用。CS8900驱动程序文件如下。


drivers/cs8900.c


drivers/cs8900.h


对于Flash的选择就麻烦多了,Flash芯片价格或者采购方面的因素都有影响。多数开发板大小、型号不都相同。所以还需要移植Flash的驱动。每种开发板目录下一般都有flash.c这个文件,需要根据具体的Flash类型修改。例如:


board/fs2410/flash.c


7)调试U-Boot源代码,直到U-Boot在开发板上能够正常启动。


调试的过程可能是很艰难的,需要借助工具,并且有些问题可能困扰很长时间。


6.2.5  添加U-Boot命令


U-Boot的命令为用户提供了交互功能,并且已经实现了几十个常用的命令。如果开发板需要很特殊的操作,可以添加新的U-Boot命令。


U-Boot的每一个命令都是通过U_Boot_CMD宏定义的。这个宏在include/command.h头文件中定义,每一个命令定义一个cmd_tbl_t结构体。


 


#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \


cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}


 


这样每一个U-Boot命令有一个结构体来描述。结构体包含的成员变量:命令名称、最大参数个数、重复数、命令执行函数、用法、帮助。


从控制台输入的命令是由common/command.c中的程序解释执行的。find_cmd()负责匹配输入的命令,从列表中找出对应的命令结构体。


基于U-Boot命令的基本框架,来分析一下简单的icache操作命令,就可以知道添加新命令的方法。


1)定义CACHE命令。在include/cmd_confdefs.h中定义了所有U-Boot命令的标志位。


 


#define CFG_CMD_CACHE       0x00000010ULL   /* icache, dcache       */


 


如果有更多的命令,也要在这里添加定义。


2)实现CACHE命令的操作函数。下面是common/cmd_cache.c文件中icache命令部分的代码。


 


#if (CONFIG_COMMANDS & CFG_CMD_CACHE)


static int on_off (const char *s)


{       //这个函数解析参数,判断是打开cache,还是关闭cache


        if (strcmp(s, "on") == 0) {  //参数为“on


               return (1);


        } else if (strcmp(s, "off") == 0) {  //参数为“off


               return (0);


    }


    return (-1);


}


 


int do_icache ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])


{     //对指令cache的操作函数


      switch (argc) {


      case 2:               /* 参数个数为1,则执行打开或者关闭指令cache操作 */


             switch (on_off(argv[1])) {


             case 0:     icache_disable();        //打开指令cache


                   break;


             case 1:     icache_enable ();        //关闭指令cache


                   break;


             }


            /* FALL TROUGH */


      case 1:           /* 参数个数为0,则获取指令cache状态*/ 


            printf ("Instruction Cache is %s\n",


                    icache_status() ? "ON" : "OFF");


            return 0;


      default:  //其他缺省情况下,打印命令使用说明


            printf ("Usage:\n%s\n", cmdtp->usage);


            return 1;


      }


      return 0;


}


……


U_Boot_CMD( //通过宏定义命令


    icache,   2,   1,     do_icache,  //命令为icache,命令执行函数为do_icache()


    "icache  - enable or disable instruction cache\n",   //帮助信息


    "[on, off]\n"


    "    - enable or disable instruction cache\n"


);


……


#endif


 


U-Boot的命令都是通过结构体__U_Boot_cmd_##name来描述的。根据U_Boot_CMDinclude/command.h中的两行定义可以明白。


 


#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \


cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}


 


还有,不要忘了在common/Makefile中添加编译的目标文件。


3)打开CONFIG_COMMANDS选项的命令标志位。这个程序文件开头有#if语句需要预处理是否包含这个命令函数。CONFIG_COMMANDS选项在开发板的配置文件中定义。例如:SMDK2410平台在include/configs/smdk2410.h中有如下定义。


 


/***********************************************************


 * Command definition


 ***********************************************************/


#define CONFIG_COMMANDS \


                 (CONFIG_CMD_DFL  | \


                 CFG_CMD_CACHE     | \


                 CFG_CMD_REGINFO    | \


                 CFG_CMD_DATE      | \


                 CFG_CMD_ELF)


 


按照这3步,就可以添加新的U-Boot命令。


6.3  U-Boot的调试


新移植的U-Boot不能正常工作,这时就需要调试了。调试U-Boot离不开工具,只有理解U-Boot启动过程,才能正确地调试U-Boot源码。


6.3.1  硬件调试器


硬件电路板制作完成以后,这时上面还没有任何程序,就叫作裸板。首要的工作是把程序或者固件加载到裸板上,这就要通过硬件工具来完成。习惯上,这种硬件工具叫作仿真器。


仿真器可以通过处理器的JTAG等接口控制板子,直接把程序下载到目标板内存,或者进行Flash编程。如果板上的Flash是可以拔插的,就可以通过专用的Flash烧写器来完成。在第4章介绍过目标板跟主机之间的连接,其中JTAG等接口就是专门用来连接仿真器的。


仿真器还有一个重要的功能就是在线调试程序,这对于调试Bootloader和硬件测试程序很有用。


从最简单的JTAG电缆,到ICE仿真器,再到可以调试Linux内核的仿真器。


复杂的仿真器可以支持与计算机间的以太网或者USB接口通信。


对于U-Boot的调试,可以采用BDI2000BDI2000完全可以反汇编地跟踪Flash中的程序,也可以进行源码级的调试。


使用BDI2000调试U-boot的方法如下。


1)配置BDI2000和目标板初始化程序,连接目标板。


2)添加U-Boot的调试编译选项,重新编译。


U-Boot的程序代码是位置相关的,调试的时候尽量在内存中调试,可以修改连接定位地址TEXT_BASETEXT_BASEboard/<board_name>/config.mk中定义。


另外,如果有复位向量也需要先从链接脚本中去掉。链接脚本是board/<board_name>/
u-boot.lds


添加调试选项,在config.mk文件中查找,DBGFLAGS,加上-g选项。然后重新编译U-Boot


3)下载U-Boot到目标板内存。


通过BDI2000的下载命令LOAD,把程序加载到目标板内存中。然后跳转到U-Boot入口。


4)启动GDB调试。


启动GDB调试,这里是交叉调试的GDBGDBBDI2000建立链接,然后就可以设置断点执行了。


 


$ arm-linux-gdb u-boot


(gdb)target remote 192.168.1.100:2001


(gdb)stepi


(gdb)b start_armboot


(gdb)c


6.3.2  软件跟踪


假如U-Boot没有任何串口打印信息,手头又没有硬件调试工具,那样怎么知道U-Boot执行到什么地方了呢?可以通过开发板上的LED指示灯判断。


开发板上最好设计安装八段数码管等LED,可以用来显示数字或者数字位。


U-Boot可以定义函数show_boot_progress (int status),用来指示当前启动进度。在include/common.h头文件中声明这个函数。


 


#ifdef CONFIG_SHOW_BOOT_PROGRESS


void    show_boot_progress (int status);


#endif


 


CONFIG_SHOW_BOOT_PROGRESS是需要定义的。这个在板子配置的头文件中定义。CSB226开发板对这项功能有完整实现,可以参考。在头文件include/configs/csb226.h中,有下列一行。


 


#define CONFIG_SHOW_BOOT_PROGRESS       1


 


函数show_boot_progress (int status)的实现跟开发板关系密切,所以一般在board目录下的文件中实现。看一下CSB226board/csb226/csb226.c中的实现函数。


 


/** 设置CSB226板的012三个指示灯的开关状态


 * csb226_set_led: - switch LEDs on or off


 * @param led:   LED to switch (0,1,2)


 * @param state: switch on (1) or off (0)


 */


void csb226_set_led(int led, int state)


{


      switch(led) {


             case 0: if (state==1) {


                              GPCR0 |= CSB226_USER_LED0;


                    } else if (state==0) {


                            GPSR0 |= CSB226_USER_LED0;


                    }


                    break;


             case 1: if (state==1) {


                              GPCR0 |= CSB226_USER_LED1;


                    } else if (state==0) {


                              GPSR0 |= CSB226_USER_LED1;


                    }


                    break;


             case 2: if (state==1) {


                              GPCR0 |= CSB226_USER_LED2;


                  } else if (state==0) {


                          GPSR0 |= CSB226_USER_LED2;


                  }


                  break;


      }


      return;


}


/** 显示启动进度函数,在比较重要的阶段,设置三个灯为亮的状态(1, 5, 15*/


void show_boot_progress (int status)


{


      switch(status) {


            case  1: csb226_set_led(0,1); break;


            case  5: csb226_set_led(1,1); break;


            case 15: csb226_set_led(2,1); break;


      }


      return;


}


 


这样,在U-Boot启动过程中就可以通过show_boot_progresss指示执行进度。比如hang()函数是系统出错时调用的函数,这里需要根据特定的开发板给定显示的参数值。


 


void hang (void)


{


      puts ("### ERROR ### Please RESET the board ###\n");


#ifdef CONFIG_SHOW_BOOT_PROGRESS


      show_boot_progress(-30);


#endif


      for (;;);


6.3.3  U-Boot启动过程


尽管有了调试跟踪手段,甚至也可以通过串口打印信息了,但是不一定能够判断出错原因。如果能够充分理解代码的启动流程,那么对准确地解决和分析问题很有帮助。


开发板上电后,执行U-Boot的第一条指令,然后顺序执行U-Boot启动函数。函数调用顺序如图6.3所示。


看一下board/smsk2410/u-boot.lds这个链接脚本,可以知道目标程序的各部分链接顺序。第一个要链接的是cpu/arm920t/start.o,那么U-Boot的入口指令一定位于这个程序中。下面详细分析一下程序跳转和函数的调用关系以及函数实现。


1cpu/arm920t/start.S


这个汇编程序是U-Boot的入口程序,开头就是复位向量的代码。



6.3  U-Boot启动代码流程图


 


_start: b       reset        //复位向量


       ldr   pc, _undefined_instruction


       ldr   pc, _software_interrupt


       ldr   pc, _prefetch_abort


       ldr   pc, _data_abort


       ldr   pc, _not_used


       ldr   pc, _irq      //中断向量


       ldr   pc, _fiq      //中断向量



 /* the actual reset code  */


reset:          //复位启动子程序


       /* 设置CPUSVC32模式 */


       mrs   r0,cpsr


       bic   r0,r0,#0x1f


       orr   r0,r0,#0xd3


       msr   cpsr,r0


/* 关闭看门狗 */


 


/* 这些初始化代码在系统重起的时候执行,运行时热复位从RAM中启动不执行 */


#ifdef CONFIG_INIT_CRITICAL


       bl    cpu_init_crit


#endif


 


relocate:                       /* U-Boot重新定位到RAM */


       adr   r0, _start          /* r0是代码的当前位置 */


       ldr   r1, _TEXT_BASE      /* 测试判断是从Flash启动,还是RAM */


       cmp     r0, r1          /* 比较r0r1,调试的时候不要执行重定位 */


       beq     stack_setup    /* 如果r0等于r1,跳过重定位代码 */


       /* 准备重新定位代码 */


       ldr   r2, _armboot_start


       ldr   r3, _bss_start


       sub   r2, r3, r2          /* r2 得到armboot的大小   */


       add   r2, r0, r2          /* r2 得到要复制代码的末尾地址 */


copy_loop: /* 重新定位代码 */


       ldmia r0!, {r3-r10}   /*从源地址[r0]复制 */


       stmia r1!, {r3-r10}   /* 复制到目的地址[r1] */


       cmp   r0, r2          /* 复制数据块直到源数据末尾地址[r2] */


       ble   copy_loop


 


       /* 初始化堆栈等    */


stack_setup:


       ldr   r0, _TEXT_BASE              /* 上面是128 KiB重定位的u-boot */


       sub   r0, r0, #CFG_MALLOC_LEN     /* 向下是内存分配空间 */


       sub   r0, r0, #CFG_GBL_DATA_SIZE /* 然后是bdinfo结构体地址空间  */


#ifdef CONFIG_USE_IRQ


       sub   r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)


#endif


       sub   sp, r0, #12     /* abort-stack预留3个字 */


clear_bss:


       ldr   r0, _bss_start      /* 找到bss段起始地址 */


       ldr   r1, _bss_end        /*  bss段末尾地址   */


       mov   r2, #0x00000000     /* 清零 */


clbss_l:str r2, [r0]        /* bss段地址空间清零循环...  */


       add   r0, r0, #4


       cmp   r0, r1


       bne   clbss_l


       /* 跳转到start_armboot函数入口,_start_armboot字保存函数入口指针 */


       ldr   pc, _start_armboot


_start_armboot: .word start_armboot     //start_armboot函数在lib_arm/board.c中实现


/* 关键的初始化子程序 */


cpu_init_crit:


……  //初始化CACHE,关闭MMU等操作指令


       /* 初始化RAM时钟。


       * 因为内存时钟是依赖开发板硬件的,所以在board的相应目录下可以找到memsetup.S文件。


       */


       mov   ip, lr


       bl    memsetup        //memsetup子程序在board/smdk2410/memsetup.S中实现


       mov   lr, ip


       mov   pc, lr


 


2lib_arm/board.c


start_armbootU-Boot执行的第一个C语言函数,完成系统初始化工作,进入主循环,处理用户输入的命令。


 


 


void start_armboot (void)


{


       DECLARE_GLOBAL_DATA_PTR;


       ulong size;


       init_fnc_t **init_fnc_ptr;


       char *s;


       /* Pointer is writable since we allocated a register for it */


       gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));


       /* compiler optimization barrier needed for GCC >= 3.4 */


       __asm__ __volatile__("": : :"memory");


       memset ((void*)gd, 0, sizeof (gd_t));


       gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));


       memset (gd->bd, 0, sizeof (bd_t));


       monitor_flash_len = _bss_start - _armboot_start;


       /* 顺序执行init_sequence数组中的初始化函数 */


       for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {


              if ((*init_fnc_ptr)() != 0) {


                      hang ();


              }


       }


       /*配置可用的Flash */


       size = flash_init ();


       display_flash_config (size);


       /* _armboot_start u-boot.lds链接脚本中定义 */


       mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);


       /* 配置环境变量,重新定位 */


       env_relocate ();


       /* 从环境变量中获取IP地址 */


       gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");


       /* 以太网接口MAC 地址 */


       ……


       devices_init ();      /* 获取列表中的设备 */


       jumptable_init ();


       console_init_r ();    /* 完整地初始化控制台设备 */


       enable_interrupts (); /* 使能例外处理 */


       /* 通过环境变量初始化 */


       if ((s = getenv ("loadaddr")) != NULL) {


               load_addr = simple_strtoul (s, NULL, 16);


       }


       /* main_loop()总是试图自动启动,循环不断执行 */


       for (;;) {


               main_loop ();      /* 主循环函数处理执行用户命令 -- common/main.c */


       }


       /* NOTREACHED - no way out of command loop except booting */


}


 


3init_sequence[]


init_sequence[]数组保存着基本的初始化函数指针。这些函数名称和实现的程序文件在下列注释中。


 


init_fnc_t *init_sequence[] = {


       cpu_init,             /* 基本的处理器相关配置 -- cpu/arm920t/cpu.c */


       board_init,           /* 基本的板级相关配置 -- board/smdk2410/smdk2410.c */


       interrupt_init,       /* 初始化例外处理 -- cpu/arm920t/s3c24x0/interrupt.c */


       env_init,             /* 初始化环境变量 -- common/cmd_flash.c */


       init_baudrate,        /* 初始化波特率设置 -- lib_arm/board.c */


       serial_init,          /* 串口通讯设置 -- cpu/arm920t/s3c24x0/serial.c */


       console_init_f,       /* 控制台初始化阶段1 -- common/console.c */


       display_banner,       /* 打印u-boot信息 -- lib_arm/board.c */


       dram_init,            /* 配置可用的RAM -- board/smdk2410/smdk2410.c */


       display_dram_config,  /* 显示RAM的配置大小 -- lib_arm/board.c */


       NULL,


};


6.3.4  U-Boot与内核的关系


U-Boot作为Bootloader,具备多种引导内核启动的方式。常用的gobootm命令可以直接引导内核映像启动。U-Boot与内核的关系主要是内核启动过程中参数的传递。


1go命令的实现


 


/* common/cmd_boot.c  */


int do_go (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])


{


       ulong addr, rc;


       int     rcode = 0;


       if (argc < 2) {


              printf ("Usage:\n%s\n", cmdtp->usage);


              return 1;


       }


       addr = simple_strtoul(argv[1], NULL, 16);


       printf ("## Starting application at 0x%08lX ...\n", addr);


       /*


        * pass address parameter as argv[0] (aka command name),


        * and all remaining args


        */


       rc = ((ulong (*)(int, char *[]))addr) (--argc, &argv[1]);


       if (rc != 0) rcode = 1;


 


       printf ("## Application terminated, rc = 0x%lX\n", rc);


       return rcode;


}


 


go命令调用do_go()函数,跳转到某个地址执行的。如果在这个地址准备好了自引导的内核映像,就可以启动了。尽管go命令可以带变参,实际使用时一般不用来传递参数。


2bootm命令的实现


 


/* common/cmd_bootm.c */


int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])


{


       ulong iflag;


       ulong addr;


       ulong data, len, checksum;


       ulong  *len_ptr;


       uint  unc_len = 0x400000;


       int   i, verify;


       char  *name, *s;


       int   (*appl)(int, char *[]);


       image_header_t *hdr = &header;


 


       s = getenv ("verify");


       verify = (s && (*s == 'n')) ? 0 : 1;


       if (argc < 2) {


              addr = load_addr;


       } else {


              addr = simple_strtoul(argv[1], NULL, 16);


       }


       SHOW_BOOT_PROGRESS (1);


       printf ("## Booting image at %08lx ...\n", addr);


       /* Copy header so we can blank CRC field for re-calculation */


       memmove (&header, (char *)addr, sizeof(image_header_t));


       if (ntohl(hdr->ih_magic) != IH_MAGIC)


       {


              puts ("Bad Magic Number\n");


              SHOW_BOOT_PROGRESS (-1);


              return 1;


       }


       SHOW_BOOT_PROGRESS (2);


       data = (ulong)&header;


       len  = sizeof(image_header_t);


 


       checksum = ntohl(hdr->ih_hcrc);


       hdr->ih_hcrc = 0;


 


       if(crc32 (0, (char *)data, len) != checksum) {


              puts ("Bad Header Checksum\n");


              SHOW_BOOT_PROGRESS (-2);


              return 1;


       }


       SHOW_BOOT_PROGRESS (3);


       /* for multi-file images we need the data part, too */


       print_image_hdr ((image_header_t *)addr);


       data = addr + sizeof(image_header_t);


       len  = ntohl(hdr->ih_size);


       if(verify) {


              puts ("   Verifying Checksum ... ");


              if(crc32 (0, (char *)data, len) != ntohl(hdr->ih_dcrc)) {


                     printf ("Bad Data CRC\n");


                     SHOW_BOOT_PROGRESS (-3);


                     return 1;


              }


              puts ("OK\n");


       }


       SHOW_BOOT_PROGRESS (4);


       len_ptr = (ulong *)data;


……


       switch (hdr->ih_os) {


       default:                /* handled by (original) Linux case */


       case IH_OS_LINUX:


             do_bootm_linux  (cmdtp, flag, argc, argv,


                         addr, len_ptr, verify);


             break;


       ……


}


 


bootm命令调用do_bootm函数。这个函数专门用来引导各种操作系统映像,可以支持引导LinuxvxWorksQNX等操作系统。引导Linux的时候,调用do_bootm_linux()函数。


3do_bootm_linux函数的实现


 


/* lib_arm/armlinux.c */


void do_bootm_linux (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],


                   ulong addr, ulong *len_ptr, int verify)


{


       DECLARE_GLOBAL_DATA_PTR;


       ulong len = 0, checksum;


       ulong initrd_start, initrd_end;


       ulong data;


       void (*theKernel)(int zero, int arch, uint params);


       image_header_t *hdr = &header;


       bd_t *bd = gd->bd;


#ifdef CONFIG_CMDLINE_TAG


       char *commandline = getenv ("bootargs");


#endif


       theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);


       /* Check if there is an initrd image */


       if(argc >= 3) {


              SHOW_BOOT_PROGRESS (9);


              addr = simple_strtoul (argv[2], NULL, 16);


              printf ("## Loading Ramdisk Image at %08lx ...\n", addr);


              /* Copy header so we can blank CRC field for re-calculation */


              memcpy (&header, (char *) addr, sizeof (image_header_t));


              if (ntohl (hdr->ih_magic) != IH_MAGIC) {


                      printf ("Bad Magic Number\n");


                      SHOW_BOOT_PROGRESS (-10);


                      do_reset (cmdtp, flag, argc, argv);


              }


              data = (ulong) & header;


              len = sizeof (image_header_t);


              checksum = ntohl (hdr->ih_hcrc);


              hdr->ih_hcrc = 0;


              if(crc32 (0, (char *) data, len) != checksum) {


                     printf ("Bad Header Checksum\n");


                     SHOW_BOOT_PROGRESS (-11);


                     do_reset (cmdtp, flag, argc, argv);


              }


              SHOW_BOOT_PROGRESS (10);


              print_image_hdr (hdr);


              data = addr + sizeof (image_header_t);


              len = ntohl (hdr->ih_size);


              if(verify) {


                     ulong csum = 0;


                     printf ("   Verifying Checksum ... ");


                     csum = crc32 (0, (char *) data, len);


                     if (csum != ntohl (hdr->ih_dcrc)) {


                            printf ("Bad Data CRC\n");


                            SHOW_BOOT_PROGRESS (-12);


                            do_reset (cmdtp, flag, argc, argv);


                     }


                     printf ("OK\n");


              }


              SHOW_BOOT_PROGRESS (11);


              if ((hdr->ih_os != IH_OS_LINUX) ||


                     (hdr->ih_arch != IH_CPU_ARM) ||


                     (hdr->ih_type != IH_TYPE_RAMDISK)) {


                     printf ("No Linux ARM Ramdisk Image\n");


                     SHOW_BOOT_PROGRESS (-13);


                     do_reset (cmdtp, flag, argc, argv);


              }


              /* Now check if we have a multifile image */


       } else if ((hdr->ih_type == IH_TYPE_MULTI) && (len_ptr[1])) {


               ulong tail = ntohl (len_ptr[0]) % 4;


               int i;


               SHOW_BOOT_PROGRESS (13);


               /* skip kernel length and terminator */


               data = (ulong) (&len_ptr[2]);


               /* skip any additional image length fields */


               for (i = 1; len_ptr; ++i)


                       data += 4;


              /* add kernel length, and align */


              data += ntohl (len_ptr[0]);


              if (tail) {


                       data += 4 - tail;


              }


              len = ntohl (len_ptr[1]);


       } else {


               /* no initrd image */


              SHOW_BOOT_PROGRESS (14);


              len = data = 0;


       }


       if (data) {


               initrd_start = data;


               initrd_end = initrd_start + len;


       } else {


               initrd_start = 0;


               initrd_end = 0;


       }


       SHOW_BOOT_PROGRESS (15);


       debug ("## Transferring control to Linux (at address %08lx) ...\n",


               (ulong) theKernel);


#if defined (CONFIG_SETUP_MEMORY_TAGS) || \


      defined (CONFIG_CMDLINE_TAG) || \


      defined (CONFIG_INITRD_TAG) || \


      defined (CONFIG_SERIAL_TAG) || \


      defined (CONFIG_REVISION_TAG) || \


      defined (CONFIG_LCD) || \


      defined (CONFIG_VFD)


      setup_start_tag (bd);


#ifdef CONFIG_SERIAL_TAG


      setup_serial_tag (&params);


#endif


#ifdef CONFIG_REVISION_TAG


      setup_revision_tag (&params);


#endif


#ifdef CONFIG_SETUP_MEMORY_TAGS


      setup_memory_tags (bd);


#endif


#ifdef CONFIG_CMDLINE_TAG


      setup_commandline_tag (bd, commandline);


#endif


#ifdef CONFIG_INITRD_TAG


      if (initrd_start && initrd_end)


               setup_initrd_tag (bd, initrd_start, initrd_end);


#endif


      setup_end_tag (bd);


#endif


      /* we assume that the kernel is in place */


      printf ("\nStarting kernel ...\n\n");


      cleanup_before_linux ();


 


      theKernel (0, bd->bi_arch_number, bd->bi_boot_params);


}


 


do_bootm_linux()函数是专门引导Linux映像的函数,它还可以处理ramdisk文件系统的映像。这里引导的内核映像和ramdisk映像,必须是U-Boot格式的。U-Boot格式的映像可以通过mkimage工具来转换,其中包含了U-Boot可以识别的符号。


6.4  使用U-Boot


U-Boot是“Monitor”。除了Bootloader的系统引导功能,它还有用户命令接口,提供了一些复杂的调试、读写内存、烧写Flash、配置环境变量等功能。掌握U-Boot的使用,将极大地方便嵌入式系统的开发。


6.4.1  烧写U-BootFlash


新开发的电路板没有任何程序可以执行,也就不能启动,需要先将U-Boot烧写到Flash中。


如果主板上的EPROM或者Flash能够取下来,就可以通过编程器烧写。例如:计算机BIOS就存储在一块256KBFlash上,通过插座与主板连接。


但是多数嵌入式单板使用贴片的Flash,不能取下来烧写。这种情况可以通过处理器的调试接口,直接对板上的Flash编程。


处理器调试接口是为处理器芯片设计的标准调试接口,包含BDMJTAGEJTAG 3种接口标准。JTAG接口在第4章已经介绍过;BDMBackground Debug Mode)主要应用在PowerPC8xx系列处理器上;EJTAG主要应用在MIPS处理器上。这3种硬件接口标准定义有所不同,但是功能基本相同,下面都统称为JTAG接口。


JTAG接口需要专用的硬件工具来连接。无论从功能、性能角度,还是从价格角度,这些工具都有很大差异。关于这些工具的选择,将在第6.4.1节详细介绍。


最简单方式就是通过JTAG电缆,转接到计算机并口连接。这需要在主机端开发烧写程序,还需要有并口设备驱动程序。开发板上电或者复位的时候,烧写程序探测到处理器并且开始通信,然后把Bootloader下载并烧写到Flash中。这种方式速率很慢,可是价格非常便宜。一般来说,平均每秒钟可以烧写100200个字节。


烧写完成后,复位实验板,串口终端应该显示U-Boot的启动信息。


6.4.2  U-Boot的常用命令


U-Boot上电启动后,敲任意键可以退出自动启动状态,进入命令行。


 


U-Boot 1.1.2 (Apr 26 2005 - 12:27:13)


U-Boot code: 11080000 -> 1109614C  BSS: -> 1109A91C


RAM Configuration:


Bank #0: 10000000 32 MB


Micron StrataFlash MT28F128J3 device initialized


Flash: 32 MB


In:    serial


Out:   serial


Err:   serial


Hit any key to stop autoboot:  0


U-Boot>


 


在命令行提示符下,可以输入U-Boot的命令并执行。U-Boot可以支持几十个常用命令,通过这些命令,可以对开发板进行调试,可以引导Linux内核,还可以擦写Flash完成系统部署等功能。掌握这些命令的使用,才能够顺利地进行嵌入式系统的开发。


输入help命令,可以得到当前U-Boot的所有命令列表。每一条命令后面是简单的命令说明。


 


=> help


?       - alias for 'help'


autoscr - run script from memory


base    - print or set address offset


bdinfo  - print Board Info structure


boot    - boot default, i.e., run 'bootcmd'


bootd   - boot default, i.e., run 'bootcmd'


bootm   - boot application image from memory


bootp   - boot image via network using BootP/TFTP protocol


cmp     - memory compare


coninfo  - print console devices and information


cp      - memory copy


crc32   - checksum calculation


dhcp    - invoke DHCP client to obtain IP/boot params


echo    - echo args to console


erase   - erase FLASH memory


flinfo  - print FLASH memory information


go      - start application at address 'addr'


help    - print online help


iminfo  - print header information for application image


imls    - list all images found in flash


itest    - return true/false on integer compare


loadb   - load binary file over serial line (kermit mode)


loads   - load S-Record file over serial line


loop   - infinite loop on address range


md    - memory display


mm    - memory modify (auto-incrementing)


mtest   - simple RAM test


mw      - memory write (fill)


nfs     - boot image via network using NFS protocol


nm      - memory modify (constant address)


printenv - print environment variables


protect - enable or disable FLASH write protection


rarpboot - boot image via network using RARP/TFTP protocol


reset   - Perform RESET of the CPU


run     - run commands in an environment variable


saveenv - save environment variables to persistent storage


setenv  - set environment variables


sleep   - delay execution for some time


tftpboot - boot image via network using TFTP protocol


version - print monitor version


=>


 


U-Boot还提供了更加详细的命令帮助,通过help命令还可以查看每个命令的参数说明。由于开发过程的需要,有必要先把U-Boot命令的用法弄清楚。接下来,根据每一条命令的帮助信息,解释一下这些命令的功能和参数。


 


=> help bootm


bootm [addr [arg ...]]


    - boot application image stored in memory


          passing arguments 'arg ...'; when booting a Linux kernel,


          'arg' can be the address of an initrd image


 


bootm命令可以引导启动存储在内存中的程序映像。这些内存包括RAM和可以永久保存的Flash


1个参数addr是程序映像的地址,这个程序映像必须转换成U-Boot的格式。


2个参数对于引导Linux内核有用,通常作为U-Boot格式的RAMDISK映像存储地址;也可以是传递给Linux内核的参数(缺省情况下传递bootargs环境变量给内核)。


 


=> help bootp


bootp [loadAddress] [bootfilename]


bootp命令通过bootp请求,要求DHCP服务器分配IP地址,然后通过TFTP协议下载指定的文件到内存。


1个参数是下载文件存放的内存地址。


2个参数是要下载的文件名称,这个文件应该在开发主机上准备好。


 


=> help cmp


cmp [.b, .w, .l] addr1 addr2 count


     - compare memory


 


cmp命令可以比较2块内存中的内容。.b以字节为单位;.w以字为单位;.l以长字为单位。注意:cmp.b中间不能保留空格,需要连续敲入命令。


1个参数addr1是第一块内存的起始地址。


2个参数addr2是第二块内存的起始地址。


3个参数count是要比较的数目,单位按照字节、字或者长字。


 


=> help cp


cp [.b, .w, .l] source target count


       - copy memory


 


cp命令可以在内存中复制数据块,包括对Flash的读写操作。


1个参数source是要复制的数据块起始地址。


2个参数target是数据块要复制到的地址。这个地址如果在Flash中,那么会直接调用写Flash的函数操作。所以U-BootFlash就使用这个命令,当然需要先把对应Flash区域擦干净。


3个参数count是要复制的数目,根据cp.b cp.w cp.l分别以字节、字、长字为单位。


 


=> help crc32


crc32 address count [addr]


     - compute CRC32 checksum [save at addr]  


 


crc32命令可以计算存储数据的校验和。


1个参数address是需要校验的数据起始地址。


2个参数count是要校验的数据字节数。


3个参数addr用来指定保存结果的地址。


 


=> help echo


echo [args..]


      - echo args to console; \c suppresses newline


 


echo命令回显参数。


 


=> help erase


erase start end


      - erase FLASH from addr 'start' to addr 'end'


erase N:SF[-SL]


      - erase sectors SF-SL in FLASH bank # N


erase bank N


      - erase FLASH bank # N


erase all


      - erase all FLASH banks


 


erase命令可以擦Flash


参数必须指定Flash擦除的范围。


按照起始地址和结束地址,start必须是擦除块的起始地址;end必须是擦除末尾块的结束地址。这种方式最常用。举例说明:擦除0x20000 – 0x3ffff区域命令为erase 20000 3ffff


按照组和扇区,N表示Flash的组号,SF表示擦除起始扇区号,SL表示擦除结束扇区号。另外,还可以擦除整个组,擦除组号为N的整个Flash组。擦除全部Flash只要给出一个all的参数即可。


 


=> help flinfo


flinfo


       - print information for all FLASH memory banks


flinfo N


       - print information for FLASH memory bank # N


 


flinfo命令打印全部Flash组的信息,也可以只打印其中某个组。一般嵌入式系统的Flash只有一个组。


 


=> help go


go addr [arg ...]


      - start application at address 'addr'


        passing 'arg' as arguments


 


go命令可以执行应用程序。


1个参数是要执行程序的入口地址。


2个可选参数是传递给程序的参数,可以不用。


 


=> help iminfo


iminfo addr [addr ...]


      - print header information for application image starting at


         address 'addr' in memory; this includes verification of the


         image contents (magic number, header and payload checksums)


 


iminfo可以打印程序映像的开头信息,包含了映像内容的校验(序列号、头和校验和)。


1个参数指定映像的起始地址。


可选的参数是指定更多的映像地址。


 


=> help loadb


loadb [ off ] [ baud ]


     - load binary file over serial line with offset 'off' and baudrate 'baud'


 


loadb命令可以通过串口线下载二进制格式文件。


 


=> help loads


loads [ off ]


    - load S-Record file over serial line with offset 'off'


 


loads命令可以通过串口线下载S-Record格式文件。


 


=> help mw


mw [.b, .w, .l] address value [count]


     - write memory


 


mw命令可以按照字节、字、长字写内存,.b .w .l的用法与cp命令相同。


1个参数address是要写的内存地址。


2个参数value是要写的值。


3个可选参数count是要写单位值的数目。


 


=> help nfs


nfs [loadAddress] [host ip addr:bootfilename]


 


nfs命令可以使用NFS网络协议通过网络启动映像。


 


=> help nm


nm [.b, .w, .l] address


     - memory modify, read and keep address


 


nm命令可以修改内存,可以按照字节、字、长字操作。


参数address是要读出并且修改的内存地址。


 


=> help printenv


printenv


      - print values of all environment variables


printenv name ...


      - print value of environment variable 'name'


 


printenv命令打印环境变量。


可以打印全部环境变量,也可以只打印参数中列出的环境变量。


 


=> help protect


protect on  start end


      - protect Flash from addr 'start' to addr 'end'


protect on  N:SF[-SL]


      - protect sectors SF-SL in Flash bank # N


protect on  bank N


      - protect Flash bank # N


protect on  all


      - protect all Flash banks


protect off start end


      - make Flash from addr 'start' to addr 'end' writable


protect off N:SF[-SL]


     - make sectors SF-SL writable in Flash bank # N


protect off bank N


     - make Flash bank # N writable


protect off all


     - make all Flash banks writable


 


protect命令是对Flash写保护的操作,可以使能和解除写保护。


1个参数on代表使能写保护;off代表解除写保护。


23参数是指定Flash写保护操作范围,跟擦除的方式相同。


 


=> help rarpboot


rarpboot [loadAddress] [bootfilename]


 


rarboot命令可以使用TFTP协议通过网络启动映像。也就是把指定的文件下载到指定地址,然后执行。


1个参数是映像文件下载到的内存地址。


2个参数是要下载执行的映像文件。


 


=> help run


run var [...]


      - run the commands in the environment variable(s) 'var'


 


run命令可以执行环境变量中的命令,后面参数可以跟几个环境变量名。


 


=> help setenv


setenv name value ...


      - set environment variable 'name' to 'value ...'


setenv name


      - delete environment variable 'name'


 


setenv命令可以设置环境变量。


1个参数是环境变量的名称。


2个参数是要设置的值,如果没有第2个参数,表示删除这个环境变量。


 


 


=> help sleep


sleep N


      - delay execution for N seconds (N is _decimal_ !!!)


 


sleep命令可以延迟N秒钟执行,N为十进制数。


 


=> help tftpboot


tftpboot [loadAddress] [bootfilename]


 


tftpboot命令可以使用TFTP协议通过网络下载文件。按照二进制文件格式下载。另外使用这个命令,必须配置好相关的环境变量。例如serveripipaddr


1个参数loadAddress是下载到的内存地址。


2个参数是要下载的文件名称,必须放在TFTP服务器相应的目录下。


这些U-Boot命令为嵌入式系统提供了丰富的开发和调试功能。在Linux内核启动和调试过程中,都可以用到U-Boot的命令。但是一般情况下,不需要使用全部命令。比如已经支持以太网接口,可以通过tftpboot命令来下载文件,那么还有必要使用串口下载的loadb吗?反过来,如果开发板需要特殊的调试功能,也可以添加新的命令。


在建立交叉开发环境和调试Linux内核等章节时,在ARM平台上移植了U-Boot,并且提供了具体U-Boot的操作步骤。


6.4.3  U-Boot的环境变量


有点类似ShellU-Boot也使用环境变量。可以通过printenv命令查看环境变量的设置。


 


U-Boot> printenv


bootdelay=3


baudrate=115200


netmask=255.255.0.0


ethaddr=12:34:56:78:90:ab


bootfile=uImage


bootargs=console=ttyS0,115200 root=/dev/ram rw initrd=0x30800000,8M


bootcmd=tftp 0x30008000 zImage;go 0x30008000


serverip=192.168.1.1


ipaddr=192.168.1.100


stdin=serial


stdout=serial


stderr=serial


 


Environment size: 337/131068 bytes


U-Boot>


 


6.5是常用环境变量的含义解释。通过printenv命令可以打印出这些变量的值。


6.5                                                  U-Boot环境变量的解释说明






bootdelay


定义执行自动启动的等候秒数


baudrate


定义串口控制台的波特率


netmask


定义以太网接口的掩码


ethaddr


定义以太网接口的MAC地址


bootfile


定义缺省的下载文件


bootargs


定义传递给Linux内核的命令行参数


bootcmd


定义自动启动时执行的几条命令


serverip


定义tftp服务器端的IP地址


ipaddr


定义本地的IP地址


stdin


定义标准输入设备,一般是串口


stdout


定义标准输出设备,一般是串口


stderr


定义标准出错信息输出设备,一般是串口


 


U-Boot的环境变量都可以有缺省值,也可以修改并且保存在参数区。U-Boot的参数区一般有EEPROMFlash两种设备。


环境变量的设置命令为setenv,在6.2.2节有命令的解释。


举例说明环境变量的使用。


 


=>setenv serverip  192.168.1.1


=>setenv ipaddr  192.168.1.100


=>setenv rootpath  "/usr/local/arm/3.3.2/rootfs"


=>setenv bootargs  "root=/dev/nfs rw nfsroot=\$(serverip):\$(rootpath) ip=
\$(ipaddr)
"


=>setenv kernel_addr 30000000


=>setenv nfscmd  "tftp \$(kernel_addr) uImage; bootm \$(kernel_addr) "


=>run nfscmd


 


上面定义的环境变量有serverip ipaddr rootpath bootargs kernel_addr。环境变量bootargs中还使用了环境变量,bootargs定义命令行参数,通过bootm命令传递给内核。环境变量nfscmd中也使用了环境变量,功能是把uImage下载到指定的地址并且引导起来。可以通过run命令执行nfscmd脚本。



PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
4
关闭 站长推荐上一条 /3 下一条