原创 盘点当下大热的 7 大 Github 机器学习『创新』项目

2019-9-24 11:28 1049 7 2 分类: 机器人/ AI 文集: AI
本文将会分享近期发布的七大GitHub机器学习项目。这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP)、计算机视觉、大数据等。

最顶尖的Github机器学习项目

1. PyTorch-Transformers(NLP)

传送门:https://github.com/huggingface/pytorch-transformers

自然语言处理(NLP)的力量令人叹服。NLP改变了文本的处理方式,几乎到了无法用语言描述的程度。

在最先进的一系列NLP库中,PyTorch-Transformers出现最晚,却已打破各种NLP任务中已有的一切基准。它最吸引人的地方在于涵盖了PyTorch实现、预训练模型权重及其他重要元素,可以帮助用户快速入门。

运行最先进的模型需要庞大的计算能力。PyTorch-Transformers在很大程度上解决了这个问题,它能够帮助这类人群建立起最先进的NLP模型。

这里有几篇深度剖析PyTorch-Transformers的文章,可以帮助用户了解这一模型(及NLP中预训练模型的概念):

· PyTorch-Transformers:一款可处理最先进NLP的惊人模型库(使用Python)
https://www.analyticsvidhya.com/blog/2019/07/pytorch-transformers-nlp-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 8个入门NLP最优秀的预训练模型
https://www.analyticsvidhya.com/blog/2019/03/pretrained-models-get-started-nlp/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· PyTorch——一个简单而强大的深度学习库
https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

2. NeuralClassifier (NLP)

传送门:https://github.com/Tencent/NeuralNLP-NeuralClassifier

在现实世界中,文本数据的多标签分类是一个巨大的挑战。早期面对NLP问题时,我们通常处理的是单一标签任务,但在真实生活中却远不是这么简单。

在多标签分类问题中,实例/记录具备多个标签,且每个实例的标签数量并不固定。

NeuralClassifier使我们能够在多层、多标签分类任务中快速实现神经模型。我最喜欢的是NeuralClassifier,提供了各种大众熟知的文本编码器,例如FastText、RCNN、Transformer等等。

640?wx_fmt=png

用NeuralClassifier可以执行以下分类任务:

· 双层文本分类
· 多层文本分类
· 多标签文本分类
· 多层(多标签)文本分类

以下两篇优秀的文章介绍了究竟什么是多标签分类,以及如何在Python中执行多标签分类:

· 使用NLP预测电影类型——多标签分类的精彩介绍
https://www.analyticsvidhya.com/blog/2019/04/predicting-movie-genres-nlp-multi-label-classification/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 使用Python构建你的第一个多标签图像分类模型
https://www.analyticsvidhya.com/blog/2019/04/build-first-multi-label-image-classification-model-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

3. TDEngine (大数据)

传送门:https://github.com/taosdata/TDengine

640?wx_fmt=png

TDEngine数据库在几乎不到一个月的时间内就累积了近10,000个star。继续往下读,你立马就能明白这是为何。

TDEngine是一个开源大数据平台,针对:

· 物联网(IoT)
· 车联网
· 工业物联网
· IT基础架构等等

本质上,TDEngine提供了一整套与数据工程相关的任务,用户可以用极快的速度完成所有这些工作(查询处理速度将提高10倍,计算使用率将降低到1/5)。

目前有一点需要注意——TDEngine仅支持在Linux上执行。TDEngine数据库包含完整的文件资料以及包含代码的入门指南。

建议你阅读这一篇针对数据工程师的综合资源指南:

· 想成为数据工程师?这里列出了入门应看的综合资源
https://www.analyticsvidhya.com/blog/2018/11/data-engineer-comprehensive-list-resources-get-started/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

4. Video Object Removal (计算机视觉)

传送门:https://github.com/zllrunning/video-object-removal

你是否接触过图像数据?计算机视觉是一种十分先进的技术,用于操纵和处理图像的。想要成为计算机视觉专家,图像的目标检测通常被认为是必经之路。

那么视频呢?如果要对几个视频中的目标绘制边界框,虽然看似简单,实际难度却远不止如此,而且目标的动态性会使任务更加复杂。

所以Video Object Removal非常棒,只要在视频中某一目标周围绘制边界框,即可将它删除。就是这么简单!以下是一个范例:

640?wx_fmt=gif

如果你在计算机视觉的世界里还是个小白,这里有两篇能帮助你入门并快速上手的文章:

· 对基础目标检测算法的全面介绍
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 使用深度学习2.0掌握计算机视觉
https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

5. Python Autocomplete (编程)

传送门:https://github.com/vpj/python_autocomplete

你一定会爱上Python Autocomplete的。数据科学家的所有工作就是对各种算法进行试验(至少是大多数人),而Python Autocomplete可以利用一个LSTM简单模型自动写完Python代码。

下图中,灰色的部分就是LSTM模型自动填写的代码(结果位于图像底部):

640?wx_fmt=png

开发人员如是描述:

首先清除Python代码中的注释、字符串和空行,然后进行训练和预测。模型训练的前提是对python代码进行标记化,相比使用字节编码来预测字节,这似乎更为有效。

如果你曾花费(浪费)时间编写一行行单调的Python代码,那么这一模型可能正是你所寻找的。不过它的开发还处于非常早期的阶段,操作中不可避免会出现一些问题。

如果你想知道LSTM到底是什么,请阅读这篇文章中的介绍:

· 深度学习的要点:长短时记忆(LSTM)入门
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

6. tfpyth–从TensorFlow到PyTorch再到TensorFlow (编程)

传送门:https://github.com/BlackHC/tfpyth

TensorFlow和PyTorch两大模型都坐拥庞大的用户群,但后者的使用率高得惊人,在未来一两年内很可能超过前者。不过请注意:这并不会打击Tensorflow,因为它的地位相当稳固。

所以如果你曾经在TensorFlow中写了一串代码,后来又在PyTorch中写了另一串代码,现在希望将两者结合起来用以训练模型——那么tfpyth框架会是一个好选择。Tfpyth最大的优势就在于用户不需要重写先前写好的代码。

640?wx_fmt=png

这一项目对tfpyth的使用方法给出了结构严谨的示例,这无疑是对TensorFlow与PyTorch争论的一种重新审视。

安装tfpyth易如反掌:

pip install tfpyth

以下是两篇深度介绍TensorFlow和PyTorch如何运作的文章:

· 深度学习指南:使用Python中的TensorFlow实现神经网络
https://www.analyticsvidhya.com/blog/2016/10/an-introduction-to-implementing-neural-networks-using-tensorflow/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· PyTorch——一个简单而强大的深度学习库
https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

7. MedicalNet

640?wx_fmt=png

MedicalNet中包含了一个PyTorch项目,该项目将《Med3D:用迁移学习分析3D医学图像》(https://arxiv.org/abs/1904.00625)这篇论文中的想法付诸实践。这一机器学习项目将医学数据集与不同的模态、目标器官和病理结合起来,以构建规模较大的数据集。

众所周知,深度学习模型(通常)需要大量训练数据,而TenCent发布的MedicalNet是一个相当出色的开源项目,希望大家都能尝试使用它。

MedicalNet的开发人员已经发布了四个预训练模型,这些模型基于23个数据集。如果你需要,下文对迁移学习进行了直观的介绍:

· 迁移学习及在深度学习中使用预训练模型的艺术
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python
PARTNER CONTENT

文章评论1条评论)

登录后参与讨论

curton 2019-9-24 22:04

学习了
相关推荐阅读
minicaihong 2020-10-22 16:44
场效应管放大电路的直流偏置电路详解
什么是偏置电路晶体管构成的放大器要做到不失真地将信号电压放大,就必须保证晶体管的发射结正偏、集电结反偏。即应该设置它的工作点。所谓工作点就是通过外部电路的设置使晶体管的基极、发射极和集电极处于所要求的...
minicaihong 2020-10-22 16:37
场效应管偏置电路-场效应管偏置电路的工作原理及作用分析
什么是偏置电路晶体管构成的放大器要做到不失真地将信号电压放大,就必须保证晶体管的发射结正偏、集电结反偏。即应该设置它的工作点。所谓工作点就是通过外部电路的设置使晶体管的基极、发射极和集电极处于所要求的...
minicaihong 2020-10-22 16:27
MOS管偏置电路-MOS管直流、恒流等偏置电路图文及方程详解
MOS管偏置电路MOS管直流偏置电路MOS管的单电源直流偏置电路有两种:1、只能用于结型和耗尽型MOS管的自给偏置电路。2、可用于各种MOS管的分压式偏置电路自给MOS管偏置电路(1)图解法根据图中电...
minicaihong 2020-05-27 09:50
sprintf 格式化字符串
sprintf 格式化字符串好久没写博客了,又遇到自己觉得很傻的问题,格式化字符串还要找下定义和用法sprintf() 函数把格式化的字符串写入变量中。arg1、arg2、++ 参数将被插入...
minicaihong 2020-05-25 15:07
12T和1T的单片机
标准51是12T的,就是说12个时钟周期(晶振周期,例如12M的,周期是1/12M,单位秒),机器做一个指令度周期,刚好就是1/12M*12=1uS,常见指令例如nop就是一个周期,刚好1uS,其他的...
minicaihong 2020-05-23 16:22
4HC595驱动8*8点阵屏
74HC595驱动8*8点阵屏置顶 菜袅1号 2020-05-19 10:00:03   52   收藏展开该项目使用国产M0核单片机,驱动方式类似于stm32平台;点阵驱动芯片:...
EE直播间
更多
我要评论
1
7
关闭 站长推荐上一条 /3 下一条