对于便携应用而言,电池寿命至关重要。正如烟雾探测器、安全设备和自动调温器等应用,工厂原装的电池需要能够维持长达10年以上的工作时间。因此,延长电池寿命已成为便携式应用设计中的关键组成部分。
为了最大程度地延长电池寿命,设计师需要将系统的平均电流消耗降至最低。要实现这个目的,采用多种低功耗工作模式及选用合适的元器件就非常重要。就低功耗工作模式而言,其中就包括关断模式和实时时钟待机操作模式。而主要的元器件包括:微控制器(MCU)、电源和信号链路元件。由于各种MCU在成本、外设设计、CPU架构及片上资源集成度等方面的差异日益增多,要为具体应用选择一款最佳的MCU变得更具挑战性。
对于便携式工业测量应用而言,要挑选出最适合的MCU,就须优先考虑个中的关键应用需求,如拥有更长的电池寿命、高性能的模拟外设和丰富的用户接口。右文谈到了一些实现最长电池寿命的诀窍,供设计人员参考。
应该
1.尽量将待机模式的电流消耗降至最低。在许多便携式应用中,在超过99%的时间内,CPU都处于空闲状态。这种情况下,电流消耗会逐渐向空闲模式过渡,在这种模式下,既可以进入完全关断模式或等待外部中断直至被唤醒的模式,又可利用定时器进行实时时钟操作。
2.选用唤醒时间最短的MCU。MCU在工作模式下电流消耗最大。在MCU唤醒过程中,也就是从空闲模式进入工作状态时,CPU消耗的却是 数值要高出很多的工作模式电流。因此,设计人员应该考虑选用唤醒和代码执行速度越快越好的MCU。一般而言,我们将从产生中断到时钟恢复快速稳定运行之间 的这段时间定义为唤醒时间。在图中,德州仪器MSP430F20x1的中断唤醒时间少于200纳秒。
3.采用低功耗欠压复位(BOR)保护。任何便携应用都需要BOR或低压检测功能,以此确保在电源电压降至低于规定值时,系统能自动复 位。许多MCU都具备欠压保护功能,但也额外增加了20至70微安的电流消耗。由于此项保护功能必须一直处于工作状态,设计人员应考虑采用低功耗的BOR 功能。例如,TI的MSP430 16位MCU就具有“零”功耗欠压复位保护功能。
4.尽可能高地提高集成度。某些MCU整合的功能,使你无须在板上采用高分辨率A/D、运算放大器和12位D/A。这些集成的功能可进行寄存器通信,从而取代了电流消耗更大的串行通信。在电路板上添加任何元器件,都会导致漏电流增大。
不应该
1.仅仅依靠一项规范的首页资料,就选定一款MCU。设计人员必须仔细阅读完整数据手册,留意最坏条件下的工作温度、极限参数和工作电压。
2.想当然地认为不同供应商的MCU的工作模式都差不多。实际上,MCU的电流消耗值会因不同供应商而异。例如,某家MCU供应商也许就不会提供在某种给定工作条件下所常见的全部功能。
3.采用多种电源。某些设计需要采用多种电源或复杂电源。由于电源在大多数情况下都要持续工作,使用低压差稳压器或升压转换器可能导致代价高昂,因为它不仅增加了成本,还导致平均电流消耗更大。可以考虑采用3V电源供电。
4.采用轮询监控。某些MCU建议采用无限循环,这样就可循环监控你要监控的所有外设。这是一种低效方法,它加大了CPU负荷,并增加了电 流消耗。请考虑采用具有优异中断功能支持的MCU。例如,有些低功耗MCU拥有支持多达两个8位端口的中断向量,而其它一些MCU则只支持极少数的 I/O。
5.不当使用CPU。一条常规建议是仔细阅读用户手册,确保充分利用MCU提供的特性。必须意识到,每执行一行无用代码,就会浪费一些电 池电量。一款低功耗MCU应该具有这样的硬件特性:当外设执行无须任何处理工作的特定任务时,应使CPU保持在关断状态。以自动扫描为例,A/D转换器能 自动扫描不同通道,并将数值存储在临时缓冲器、闪存或RAM中,而无须涉及CPU。
文章评论(0条评论)
登录后参与讨论