均衡技术可以分为两大类:线性和非线性均衡。这些种类是由自适应均衡器的输出接下来是如何控制均衡器来划分的。判决器决定了接收数字信号比特的值并应用门限电平来决定 的值。如果 在反馈路径中调整均衡器,均衡器就是线性的。另一方面,如果d (t)反馈回来调整均衡器,则为非线性均衡。线性均衡器包括线性横向均衡器、线性格型均衡器等等,非线性均衡器包括判决反馈均衡器、最大似然序列均衡器等等,在这里主要介绍实际中应用较广的线性横向均衡器、线性格型均衡器、判决反馈均衡器及分数间隔均衡器。
时域均衡器可以分两大类:线性均衡器和非线性均衡器。如果接收机中判决的结果经过反馈用于均衡器的参数调整,则为非线性均衡器;反之,则为线性均衡器。在线性均衡器中,最常用的均衡器结构是线性横向均衡器,它由若干个抽头延迟线组成,延时时间间隔等于码元间隔 。非线性均衡器的种类较多,包括判决反馈均衡器(DFE)、最大似然(ML)符号检测器和最大似然序列估计等。均衡器的结构可分为横向和格型等。因为很多数字通信系统的信道(例如无线移动通信信道)特性是未知和时变的,要求接收端的均衡器必须具有自适应的能力。所以,均衡器可以采用自适应信号处理的相关算法,以实现高性能的信道均衡,这类均衡器称为自适应均衡器。
按照抽样间隔的不同,均衡器还可以分为码元间隔均衡器和分数间隔均衡器。实际中码元间隔均衡器使用比较多,但是性能上却不如分数间隔均衡器的好。本章在最后阐述分数间隔均衡器,并和码元间隔均衡器在性能上加以比较,给出一个例子并对其做了计算机仿真。
横向(时间延迟或递归) 均衡器是自适应均衡发展方案中的最简单形式。在实际应用中为使参数调整得以顺利进行, 把输出信号进行判决所得的估计信号作为理想信号, 这样, 整个数字均衡器成了一个非线性系统, 其收敛性分析相当麻烦, 但在信道畸变不是特别严重的情况下, 其收敛域能够得到保证, 可以用线性系统的分析方法对其进行分析。
线性横向均衡器是自适应均衡方案中最简单的形式,它的基本框图如图3.1 所示。图中,输入信号的将来值、当前值及过去值,均被均衡器时变抽头系数进行线性加权求和后得到输出,然后根据输出值和理想值之间的差别按照一定的自适应算法调整滤波器抽头系数。在实际应用中,期望信号 是未知的,否则也就失去了通信的意义。为使参数调整得以顺利进行,一种折中的方法是把由输出信号 进行判决所得的估计信号 作为期望信号,事实上,在这种情况下,整个数字均衡器已经成了一个非线性系统,因为其收敛特性的分析是相当繁难的。但是在信道畸变不是异乎寻常的严重的情况下,其收敛性是可以得到保证的。
文章评论(0条评论)
登录后参与讨论