原创 FPGA 设计的四种常用思想与技巧

2009-2-17 17:33 1925 6 6 分类: FPGA/CPLD

FPGA 设计的四种常用思想与技巧


 




FPGA/CPLD 的设计思想与技巧是一个非常大的话题,由于篇幅所限,本文仅介绍一些常用的设计思想与技巧,包括乒乓球操作、串并转换、流水线操作和数据接口的同步方法。希望本文能引起工程师们的注意,如果能有意识地利用这些原则指导日后的设计工作,将取得事半功倍的效果!


乒乓操作



“ 乒乓操作 ” 是一个常常应用于数据流控制的处理技巧,典型的乒乓操作方法如图 1 所示。


乒乓操作的处理流程为:输入数据流通过 “ 输入数据选择单元 ” 将数据流等时分配到两个数据缓冲区,数据缓冲模块可以为任何存储模块,比较常用的存储单元为双口 RAM(DPRAM) 、单口 RAM(SPRAM) 、 FIFO 等。在第一个缓冲周期,将输入的数据流缓存到 “ 数据缓冲模块 1” ;在第 2 个缓冲周期,通过 “ 输入数据选择单元 ” 的切换,将输入的数据流缓存到 “ 数据缓冲模块 2” ,同时将 “ 数据缓冲模块 1” 缓存的第 1 个周期数据通过 “ 输入数据选择单元 ” 的选择,送到 “ 数据流运算处理模块 ” 进行运算处理;在第 3 个缓冲周期通过 “ 输入数据选择单元 ” 的再次切换,将输入的数据流缓存到 “ 数据缓冲模块 1” ,同时将 “ 数据缓冲模块 2” 缓存的第 2 个周期的数据通过 “ 输入数据选择单元 ” 切换,送到 “ 数据流运算处理模块 ” 进行运算处理。如此循环。


乒乓操作的最大特点是通过 “ 输入数据选择单元 ” 和 “ 输出数据选择单元 ” 按节拍、相互配合的切换,将经过缓冲的数据流没有停顿地送到 “ 数据流运算处理模块 ” 进行运算与处理。把乒乓操作模块当做一个整体,站在这个模块的两端看数据,输入数据流和输出数据流都是连续不断的,没有任何停顿,因此非常适合对数据流进行流水线式处理。所以乒乓操作常常应用于流水线式算法,完成数据的无缝缓冲与处理。


乒乓操作的第二个优点是可以节约缓冲区空间。比如在 WCDMA 基带应用中, 1 个帧是由 15 个时隙组成的,有时需要将 1 整帧的数据延时一个时隙后处理,比较直接的办法是将这帧数据缓存起来,然后延时 1 个时隙进行处理。这时缓冲区的长度是 1 整帧数据长,假设数据速率是 3.84Mbps , 1 帧长 10ms ,则此时需要缓冲区长度是 38400 位。如果采用乒乓操作,只需定义两个能缓冲 1 个时隙数据的 RAM( 单口 RAM 即可 ) 。当向一块 RAM 写数据的时候,从另一块 RAM 读数据,然后送到处理单元处理,此时每块 RAM 的容量仅需 2560 位即可, 2 块 RAM 加起来也只有 5120 位的容量。



另外,巧妙运用乒乓操作还可以达到用低速模块处理高速数据流的效果。如图 2 所示,数据缓冲模块采用了双口 RAM ,并在 DPRAM 后引入了一级数据预处理模块,这个数据预处理可以根据需要的各种数据运算,比如在 WCDMA 设计中,对输入数据流的解扩、解扰、去旋转等。假设端口 A 的输入数据流的速率为 100Mbps ,乒乓操作的缓冲周期是 10ms 。以下分析各个节点端口的数据速率。


A 端口处输入数据流速率为 100Mbps ,在第 1 个缓冲周期 10ms 内,通过 “ 输入数据选择单元 ” ,从 B1 到达 DPRAM1 。 B1 的数据速率也是 100Mbps , DPRAM1 要在 10ms 内写入 1Mb 数据。同理,在第 2 个 10ms ,数据流被切换到 DPRAM2 ,端口 B2 的数据速率也是 100Mbps , DPRAM2 在第 2 个 10ms 被写入 1Mb 数据。在第 3 个 10ms ,数据流又切换到 DPRAM1 , DPRAM1 被写入 1Mb 数据。


仔细分析就会发现到第 3 个缓冲周期时,留给 DPRAM1 读取数据并送到 “ 数据预处理模块 1” 的时间一共是 20ms 。有的工程师困惑于 DPRAM1 的读数时间为什么是 20ms ,这个时间是这样得来的:首先,在在第 2 个缓冲周期向 DPRAM2 写数据的 10ms 内, DPRAM1 可以进行读操作;另外,在第 1 个缓冲周期的第 5ms 起 ( 绝对时间为 5ms 时刻 ) , DPRAM1 就可以一边向 500K 以后的地址写数据,一边从地址 0 读数,到达 10ms 时, DPRAM1 刚好写完了 1Mb 数据,并且读了 500K 数据,这个缓冲时间内 DPRAM1 读了 5ms ;在第 3 个缓冲周期的第 5ms 起 ( 绝对时间为 35ms 时刻 ) ,同理可以一边向 500K 以后的地址写数据一边从地址 0 读数,又读取了 5 个 ms ,所以截止 DPRAM1 第一个周期存入的数据被完全覆盖以前, DPRAM1 最多可以读取 20ms 时间,而所需读取的数据为 1Mb ,所以端口 C1 的数据速率为: 1Mb/20ms=50Mbps 。因此, “ 数据预处理模块 1” 的最低数据吞吐能力也仅仅要求为 50Mbps 。同理, “ 数据预处理模块 2” 的最低数据吞吐能力也仅仅要求为 50Mbps 。换言之,通过乒乓操作, “ 数据预处理模块 ” 的时序压力减轻了,所要求的数据处理速率仅仅为输入数据速率的 1/2 。


通过乒乓操作实现低速模块处理高速数据的实质是:通过 DPRAM 这种缓存单元实现了数据流的串并转换,并行用 “ 数据预处理模块 1” 和 “ 数据预处理模块 2” 处理分流的数据,是面积与速度互换原则的体现!


串并转换设计技巧




串并转换是 FPGA 设计的一个重要技巧,它是数据流处理的常用手段,也是面积与速度互换思想的直接体现。串并转换的实现方法多种多样,根据数据的排序和数量的要求,可以选用寄存器、 RAM 等实现。前面在乒乓操作的图例中,就是通过 DPRAM 实现了数据流的串并转换,而且由于使用了 DPRAM ,数据的缓冲区可以开得很大,对于数量比较小的设计可以采用寄存器完成串并转换。如无特殊需求,应该用同步时序设计完成串并之间的转换。比如数据从串行到并行,数据排列顺序是高位在前,可以用下面的编码实现:



prl_temp<={prl_temp,srl_in};


其中, prl_temp 是并行输出缓存寄存器, srl_in 是串行数据输入。对于排列顺序有规定的串并转换,可以用 case 语句判断实现。对于复杂的串并转换,还可以用状态机实现。串并转换的方法比较简单,在此不必赘述。


 


流水线操作设计思想


 


首先需要声明的是,这里所讲述的流水线是指一种处理流程和顺序操作的设计思想,并非 FPGA 、 ASIC 设计中优化时序所用的 “Pipelining” 。


流水线处理是高速设计中的一个常用设计手段。如果某个设计的处理流程分为若干步骤,而且整个数据处理是 “ 单流向 ” 的,即没有反馈或者迭代运算,前一个步骤的输出是下一个步骤的输入,则可以考虑采用流水线设计方法来提高系统的工作频率。


图3


流水线设计的结构示意图如图 3 所示。其基本结构为:将适当划分的 n 个操作步骤单流向串联起来。流水线操作的最大特点和要求是,数据流在各个步骤的处理从时间上看是连续的,如果将每个操作步骤简化假设为通过一个 D 触发器 ( 就是用寄存器打一个节拍 ) ,那么流水线操作就类似一个移位寄存器组,数据流依次流经 D 触发器,完成每个步骤的操作。流水线设计时序如图 4 所示。


图4


 


流水线设计的一个关键在于整个设计时序的合理安排,要求每个操作步骤的划分合理。如果前级操作时间恰好等于后级的操作时间,设计最为简单,前级的输出直接汇入后级的输入即可;如果前级操作时间大于后级的操作时间,则需要对前级的输出数据适当缓存才能汇入到后级输入端;如果前级操作时间恰好小于后级的操作时间,则必须通过复制逻辑,将数据流分流,或者在前级对数据采用存储、后处理方式,否则会造成后级数据溢出。


在 WCDMA 设计中经常使用到流水线处理的方法,如 RAKE 接收机、搜索器、前导捕获等。流水线处理方式之所以频率较高,是因为复制了处理模块,它是面积换取速度思想的又一种具体体现。


数据接口的同步方法


 


数据接口的同步是 FPGA/CPLD 设计的一个常见问题,也是一个重点和难点,很多设计不稳定都是源于数据接口的同步有问题。


在电路图设计阶段,一些工程师手工加入 BUFT 或者非门调整数据延迟,从而保证本级模块的时钟对上级模块数据的建立、保持时间要求。还有一些工程师为了有稳定的采样,生成了很多相差 90 度的时钟信号,时而用正沿打一下数据,时而用负沿打一下数据,用以调整数据的采样位置。这两种做法都十分不可取,因为一旦芯片更新换代或者移植到其它芯片组的芯片上,采样实现必须从新设计。而且,这两种做法造成电路实现的余量不够,一旦外界条件变换 ( 比如温度升高 ) ,采样时序就有可能完全紊乱,造成电路瘫痪。


下面简单介绍几种不同情况下数据接口的同步方法:


1. 输入、输出的延时 ( 芯片间、 PCB 布线、一些驱动接口元件的延时等 ) 不可测,或者有可能变动的条件下,如何完成数据同步?


对于数据的延迟不可测或变动,就需要建立同步机制,可以用一个同步使能或同步指示信号。另外,使数据通过 RAM 或者 FIFO 的存取,也可以达到数据同步目的。


把数据存放在 RAM 或 FIFO 的方法如下:将上级芯片提供的数据随路时钟作为写信号,将数据写入 RAM 或者 FIFO ,然后使用本级的采样时钟 ( 一般是数据处理的主时钟 ) 将数据读出来即可。这种做法的关键是数据写入 RAM 或者 FIFO 要可靠,如果使用同步 RAM 或者 FIFO ,就要求应该有一个与数据相对延迟关系固定的随路指示信号,这个信号可以是数据的有效指示,也可以是上级模块将数据打出来的时钟。对于慢速数据,也可以采样异步 RAM 或者 FIFO ,但是不推荐这种做法。


数据是有固定格式安排的,很多重要信息在数据的起始位置,这种情况在通信系统中非常普遍。通讯系统中,很多数据是按照 “ 帧 ” 组织的。而由于整个系统对时钟要求很高,常常专门设计一块时钟板完成高精度时钟的产生与驱动。而数据又是有起始位置的,如何完成数据的同步,并发现数据的 “ 头 ” 呢?


数据的同步方法完全可以采用上面的方法,采用同步指示信号,或者使用 RAM 、 FIFO 缓存一下。找到数据头的方法有两种,第一种很简单,随路传输一个数据起始位置的指示信号即可,对于有些系统,特别是异步系统,则常常在数据中插入一段同步码 ( 比如训练序列 ) ,接收端通过状态机检测到同步码后就能发现数据的 “ 头 ” 了,这种做法叫做 “ 盲检测 ” 。


上级数据和本级时钟是异步的,也就是说上级芯片或模块和本级芯片或模块的时钟是异步时钟域的。


前面在输入数据同步化中已经简单介绍了一个原则:如果输入数据的节拍和本级芯片的处理时钟同频,可以直接用本级芯片的主时钟对输入数据寄存器采样,完成输入数据的同步化;如果输入数据和本级芯片的处理时钟是异步的,特别是频率不匹配的时候,则只有用处理时钟对输入数据做两次寄存器采样,才能完成输入数据的同步化。需要说明的是,用寄存器对异步时钟域的数据进行两次采样,其作用是有效防止亚稳态 ( 数据状态不稳定 ) 的传播,使后级电路处理的数据都是有效电平。但是这种做法并不能保证两级寄存器采样后的数据是正确的电平,这种方式处理一般都会产生一定数量的错误电平数据。所以仅仅适用于对少量错误不敏感的功能单元。


为了避免异步时钟域产生错误的采样电平,一般使用 RAM 、 FIFO 缓存的方法完成异步时钟域的数据转换。最常用的缓存单元是 DPRAM ,在输入端口使用上级时钟写数据,在输出端口使用本级时钟读数据,这样就非常方便的完成了异步时钟域之间的数据交换。


2. 设计数据接口同步是否需要添加约束?


建议最好添加适当的约束,特别是对于高速设计,一定要对周期、建立、保持时间等添加相应的约束。


这里附加约束的作用有两点:


a. 提高设计的工作频率,满足接口数据同步要求。通过附加周期、建立时间、保持时间等约束可以控制逻辑的综合、映射、布局和布线,以减小逻辑和布线延时,从而提高工作频率,满足接口数据同步要求。


b. 获得正确的时序分析报告。几乎所有的 FPGA 设计平台都包含静态时序分析工具,利用这类工具可以获得映射或布局布线后的时序分析报告,从而对设计的性能做出评估。静态时序分析工具以约束作为判断时序是否满足设计要求的标准,因此要求设计者正确输入约束,以便静态时序分析工具输出正确的时序分析报告。


Xilinx 和数据接口相关的常用约束有 Period 、 OFFSET_IN_BEFORE 、 OFFSET_IN_AFTER 、 OFFSET_OUT_BEFORE 和 OFFSET_OUT_AFTER 等; Altera 与数据接口相关的常用约束有 Period 、 tsu 、 tH 、 tco 等。

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
6
关闭 站长推荐上一条 /3 下一条