一、 PCB设计的一般原则<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
要使电子电路获得最佳性能,元器件的布局及导线的布设是很重要的。为了设计质量好、造价低的PCB,应遵循以下的一般性原则:
1.布局
首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。
在确定特殊元件的位置时要遵守以下原则:
(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。
(3)重量超过15g的元器件,应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。
(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。
(5)应留出印制板定位孔及固定支架所占用的位置。
根据电路的功能单元。对电路的全部元器件进行布局时,要符合以下原则:(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上。尽量减少和缩短各元器件之间的引线和连接。
(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。
(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽双为3:2或4:3。电路板面尺寸大于200×150mm时,应考虑电路板所受的机械强度。
2.布线
布线的原则如下:
(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。
(2)印制板导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过它们的电流值决定。当铜箔厚度为0.5mm、宽度为1~15mm时,通过2A的电流,温度不会高于3℃。因此,导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线,尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小于5~8mil。
(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状。这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。
3.焊盘
焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。
二、 PCB及电路抗干扰措施
印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。
1.电源线设计
根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
2.地线设计
在电子产品设计中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子产品中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:
(1)正确选择单点接地与多点接地
在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地的方式。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
(2)数字地与模拟地分开。
电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。要尽量加大线性电路的接地面积。
(3)接地线应尽量加粗。
若接地线用很细的线条,则接地电位则随电流的变化而变化,致使电子产品的定时信号电平不稳,抗噪声性能降低。因此应将接地线尽量加粗,使它能通过三倍于印制电路板的允许电流。如有可能,接地线的宽度应大于3mm。
(4)接地线构成闭环路。
设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印制电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限制,会在地线上产生较大的电位差,引起抗噪能力下降,若将接地线构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。
3.退藕电容配置
PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。退藕电容的一般配置原则是:
(1)电源输入端跨接10~100uf的电解电容器。如有可能,接100uF以上的更好。
(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1~10pF的钽电容。
(3)对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。
(4)电容引线不能太长,尤其是高频旁路电容不能有引线。
此外,还应注意以下两点:
(1)在印制板中有接触器、继电器、按钮等元件时,操作它们时均会产生较大火花放电,必须采用RC电路来吸收放电电流。一般R取1~2K,C取2.2~47uF。
(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。
二
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。 并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
1 电源、地线的处理
既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:
(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm
对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
2 数字电路与模拟电路的共地处理
现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。
3 信号线布在电(地)层上
在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理
在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用
在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
6 设计规则检查(DRC)
布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:
(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
文章评论(0条评论)
登录后参与讨论