作者: Collin Wells TI 高精度线性产品部的模拟应用工程师
文章转自德州仪器在线技术支持社区,原文地址:
http://www.deyisupport.com/blog/b/signalchain/archive/2013/09/18/51503.aspx
今年夏天,我有幸负责培训实习生“John”,帮助他排除系统设计项目的故障。这个经历让我想起了我职业生涯中所吸取的一些重要的经验教训。
几天前,John 在测试某个设计的瞬态稳定性数据时,获得了一个重要发现:输出信号的步长对实现准确的结果极其重要。
在当 John 开发某个设计并需要用运算放大器来缓冲 1μF 的负载时,问题出现了。大部分运算放大器都无法直接驱动非常大的电容性负载,因而他不得不设计一套适合的补偿方案。由于不需要输出大电流,因此 John 在运算放大器输出与电容器之间插入了一个串联的隔离电阻器 (RISO),用以对电路进行补偿,如图 1 所示。
图 1
通过利用 TINA-TI(德州仪器 (TI) 基于 SPICE 的模拟仿真程序),我帮助 John 验证了该电路的稳定性。在经过简单处理后,John 选择了能达到 45 度相位裕度的 RISO 值,然后就可以在工作台上进行结果测试。
如果您遇到了同样的问题,那么需要小心。大部分在仿真中测试稳定性的高级方法通常在工作台上并不实用。为了弥补这一问题,需要为会造成运算放大器输出发生微小变化的系统输入一个步长。
针对典型运算放大器系统的结果应出现标准的过冲和振铃响应,如图 2 所示。通过测量过冲百分比,您就可利用图 2 中的表格确定相位裕度。图中结果显示了 10mV 步长下的过冲为 20%,相当于 45 度的相位裕度。
图 2
理论介绍完毕后,我便让 John 在实验室中进行过冲百分比的测试。
他回来后告诉我说获得了一些造成过冲百分比测量失真的“奇怪”现象。他记录的函数生成器的最小步长是 100mVpp,并为我展示了图 3 中的结果。
图 3
00mV 步长下的瞬态结果
他获得的结果显然与图 2 中所示的响应不同,而且无法与相位裕度相关联。由于步长幅度是唯一的不同之处,因而我告诉他一个窍门,即维持生成器 50Ω 电阻不变,但利用 R1 和 R2 来分离输入信号,如图 4 所示。
图4
采用 50Ω 输入分离电阻修改电路
图 5 显示了 10mV 输入步长下的测试结果。非常确定的是,上述的奇怪现象已经不见了。我们可以利用这些结果对过冲进行测量,并验证设计已达到大概 45 度的相位裕度。
文章评论(0条评论)
登录后参与讨论