原创 利用陶瓷金属化给大功率LED散热

2021-1-7 10:25 2039 19 4 分类: PCB

随着使用元件的缩小,对尺寸精度要求更精密,现有DBC工艺已不敷使用,所以多数改以DPC作为陶瓷金属化为主要技术,因此DPC的技术日趋被受重视。

陶瓷材料因本身具有优良的绝缘、耐热及稳定等先天特性,所以被大量运用在电气设备的绝缘上,又因陶瓷金属化技术的成熟,近几年更被应用于LED陶瓷散热基板与载板的线路铺设。陶瓷材料金属化技术主要分为「DBC(Direct Bonded Copper) 」及「DPC(Direct Plated Copper) 」。

DPC陶瓷金属化之工艺技术,其中包含「溅镀」、「黄光显影」、「电铸」与「化镀」等工艺,其中又以「溅镀技术」的优劣对线路强度与稳定度影响最深。溅镀是电浆物理气相沉积的一种,当腔体内的惰性气体被高能电子撞击形成带正电之离子,此离子经电场加速后冲击到固体表面,进一步对靶材表面下原子造成挤压使其发生移位而碰撞出去,此具有强大动能的原子,最终镶嵌在目标基板上形成薄膜,此现象称之为「溅射」。

一般溅镀的工艺多直接在两极间施加直流电压,通常是利用气体的「辉光放电效应」,产生正离子束撞击靶原子,但气体中之电子仅会沿着电场方向做直线运动的行进,在真空状态下与气体碰撞机率低,无法大量的游离气体使其被加速而产生溅镀,导致溅镀效率降低。为了提高气体的游离率及溅镀效率,一般会在靶材上加装封闭的环状磁场,让电子受「劳伦兹力」的影响,故会以螺旋的路径绕着磁力线前进,增加与气体碰撞次数进而提升电浆游离率,此方式就是所谓的「磁控溅镀」。

以磁控溅镀所沉积于基板上的膜层通常都非常薄,所以本身需靠基板的强度去支撑,所以与基板黏着特性就格外的重要,而薄膜与基板的结合强度主要取决于材料界面,所以薄膜的结合强度也可称为「介面强度」。薄膜结合强度不只由单面所决定,还与界面两侧的材料种类相关,当两面材料的表面特性差别过大时,须加入一层与两侧材料特性都相近的中介层来增加接合强度,通常陶瓷材料多以Ni、Cr、Ti与W等元素作为中介层,以增加线路的稳定性。除此上述方式外,还可使用前处理降低表面污染,调整参数以降低镀层的显微缺陷与应力集中等问题,以大幅提升陶瓷基板与线路的接和强度。

溅镀法不但不易受材料硬度熔点限制,亦可广泛地应用在各材料之上,还具有与基板非常优秀的结合力,所以目前已被大量的导入DPC陶瓷金属化工艺上。

PARTNER CONTENT

文章评论1条评论)

登录后参与讨论

curton 2021-1-8 00:44

了解了






欢迎点击


论坛> >机器人/工业电子> >工业电子与自动化


https://mbb.eet-china.com/forum/topic/85437_1_1.html
相关推荐阅读
斯利通陶瓷电路板 2023-11-02 16:36
陶瓷基板电镀金锡合金的生产工艺方式优化
金锡合金具有优异的导热性能和机械性能,较低的熔点和回流温度,熔化后黏度低、润湿性好,焊接无需助焊剂等优点 ,被广泛应用于大功率散热元器件的装配和封装,如 LED(发光二极管)、激光...
斯利通陶瓷电路板 2023-10-28 10:47
深入了解陶瓷基板金属化,陶瓷与金属的完美结合
在大功率电子器件使用中为实现芯片与电子元件之间的互联,陶瓷作为封装基板材料,需对其表面进行金属化处理。陶瓷金属化有如下要求:优良的密封性,金属导电层的方阻和电阻率小,同时与陶瓷基板具有较强的附着力,陶...
斯利通陶瓷电路板 2023-10-25 15:13
陶瓷基板在第3代半导体功率器件封装中的应用
第3代半导体一般指禁带宽度大于2.2eV的半导体材料,也称为宽禁带半导体材料。半导体产业发展大致分为3个阶段,以硅(Si)为代表的通常称为第1代半导体材料 ;以砷化镓为代表的称为第2代半导体材料,已得...
斯利通陶瓷电路板 2023-10-20 10:34
陶瓷基板:MEMS传感器封装的创新解决方案
微型化、集成化及智能化是当今科学技术的主要发展方向。随着微机电系统(MicroElectroMechanicalSystem,MEMS)和微加工技术的发展,微型传感器也随之迅速发展。与传统的传感器相比...
斯利通陶瓷电路板 2023-10-18 16:02
射频微波技术的广泛应用及陶瓷基板在器件封装中的优势
射频微波通信可利用不同波段,服务于各类应用。例如,广播、航空通信和无线电通常采用VHF和UHF波段;雷达系统则倾向于L波段和S波段;卫星通信主要依赖C波段、X波段和Ku波段;高速数据传输和雷达应用则常...
斯利通陶瓷电路板 2023-10-16 15:19
一文读懂射频与微波的区别
射频(Radio Frequency,RF)和微波(Microwave)是电磁波的两种特定频率范围,它们在许多方面有相似之处,但也有一些显著的区别:频率范围:射频:射频波通常覆盖了从几千赫兹(kHz)...
我要评论
1
19
关闭 站长推荐上一条 /3 下一条