数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的A/D转换电路来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。它与AD574等电路相比,具有接线简单,价格低廉,转换精度高等特点,而且LM331芯片在转换过程中不需要软件程序驱动,这与AD574等需要软件程序控制的A/D转换电路相比,使用起来方便了许多。
一. 芯片简介
LM331是美国NS公司生产的性能价格比比较高的集成芯片。它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。LM331为双列直插式8引脚芯片,其引脚框图如图1所示。
图1 LM331逻辑框图
LM331 各引脚功能说明如下:脚1 为脉冲电流输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同;脚2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大;脚3 为脉冲电压输出端,
OC 门结构,输出脉冲宽度及相位同单稳态,不用时可悬空或接地;脚4 为地;脚5 为单稳态外接定时时间常数RC ;脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度Tw ;脚7 为比较器基准电压,用于设置输入脉冲的有效触发电平高低;脚8 为电源Vcc , 正常工作电压范围为4~40V。线性度好, 最大非线性失真小于0. 01 % , 工作频率低到0. 1Hz 时尚有较好的线性;变换精度高数字分辨率可达12 位; 外接电路简单, 只需接入几个外部元件就可方便构成V/ F 或F/ V 等变换电路,并且容易保证转换精度。
二. A/D转换原理
1.电压-频率转换
图2是我们常用的一种压频转换电路,按照图2设计电路, LM331采用单电源供电,电源电压VCC,模拟信号 的输入范围-VCC~0V,频率范围为1~500KHZ,非线性低于0.01%。模拟信号 经积分器LF356积分处理后,在INPUT端变成与输入电压 成正比的稳定电流输入,通过LM331芯片进行V/F转换后,变成与电压成正比的频率信号,FOUT端输出的频率信号送到计算机的计数/定时端口,计算机对频率信号进行采集、处理、存储。从而实现模拟信号到数字信号的转换。由于LM331的转换线性度直接影响转换结果的准确性,而通常引起V/F转换产生非线性误差的原因是引脚1的输出阻抗,它使输出电流随输入电压的变化而变化,因而影响转换精度,为克服此缺点,高精度V/F转换器在1脚和7脚间加入了一个积分器,这个积分器是由常规运放LF356和积分电容C4构成的反积分器。加上积分电路后,由于电流源(1引脚)总是保持地电位,电压不随 或FOUT变化,因此有很高的线性度。
2.频率-数字信号变换
图3 LM331实现A/D转换框架图
图3中,模拟信号经压/频转换器LM331,把电压信号转化为脉冲信号,脉冲信号送到计算机的计数/定时端口,有计算机对频率信号进行接收、处理、储存。由于压/频转换器LM331的压/频转换关系成线性,所以我们可以根据采集到频率数据知道模拟信号的大小,从而实现了模拟信号到数字信号的转换.频率计数器、定时器可以使用计算机的计数/定时端口,通过软件编程实现。基准频率,数据处理也是通过软件编程实现,数据可以储存到内部数据存储器或外部数据存储器中。
三. 计算机软件编程
LM331要实现A/D转换,需与计数器配合使用.LM331的输出端FOUT与单片机计数器T0端口连接,定时器T1用于定时,由公式f=D/T,D是计数值;T是计数时间.计数时间T由定时器T1确定,通过计算得出FOUT,然后进行数据处理与存储.简要程序及说明如下:
主程序MAIN设置定时器T0、T1工作方式分别为16位计数和定时,并置初值,T1开中断,T1的定时时间根据转换精度需要而定,如果取转换精度为12位,最高频率为100KHZ,计满量程时间为FFFH/100K=8.192ms.单片机采用12MHZ晶振时,机器周期=1μs,定时初值为
调DATA子程序主要是进行数据处理并存储,得到的数据就是12位A/D转换数据 ,改变定时初值,可调节A/D转换位,如13位,14位等.
结论:
运用LM331实现A/D转换, 具有电路简单,成本低,测量精度高并且转换位数可调的特点,在实际工作之前,对电路器件参数进行调校,调校之后,系统稳定性好.与AD574等电路相比,价格便宜几倍。
相关文章:LM331压频变换器的原理及应用
Principle and Applications of The Voltage Frequency Converter LM331 Lin Han | |
摘要:介绍了集成电路LM331的结构和特点,分析了V/F和F/V电路的工作原理。同时也给出了一些应用的例子。
| |
1. 概述 LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 2. 工作原理 2.1 电压—频率变换器 图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL放电。当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。图3画出了电容Ct、Cl充放电和输出脉冲f0的波形。设电容CL的充电时间为t1,放电时间为t2,则根据电容CL上电荷平衡的原理,我们有: 3. 应用 图5为由两块LM331组成的遥测电路。在人员不能进入或不易进入的场合,通过传感器将被测量转换为电压,经运算放大器放大为0~10V电压信号,由LM331进行V/F变换为脉冲信号,通过长双绞线传输到测量室,在测量室内通过光电耦合器转换为幅度稳定的脉冲电压,此脉冲电压再经LM331进行F/V变换为电压进行测量,从而可避免直接导线连接到测量室而造成的线路衰减或干扰,提高测量精度。 |
文章评论(0条评论)
登录后参与讨论