原创
可变参数的原理
2009-5-30 09:24
2379
4
4
分类:
软件与OS
本文主要介绍可变参数的函数使用,然后分析它的原理,程序员自己如何对它们实现和封装,最后是可能会出现的问题和避免措施。 VA函数(variable argument function),参数个数可变函数,又称可变参数函数。C/C++编程中,系统提供给编程人员的va函数很少。*printf()/*scanf() 系列函数,用于输入输出时格式化字符串;exec*()系列函数,用于在程序中执行外部文件(main(int argc,char*argv[]算不算呢,与其说main()也是一个可变参数函数,倒不如说它是exec*()经过封装后的具备特殊功能和意义的函数,至少在原理这一级上有很多相似之处)。由于参数个数的不确定,使va函数具有很大的灵活性,易用性,对没有使用过可变参数函数的编程人员很有诱惑力;那么,该如何编写自己的va函数,va函数的运用时机、编译实现又是如何。作者借本文谈谈自己关于va函数的一些浅见。 一、 从printf()开始 从大家都很熟悉的格式化字符串函数开始介绍可变参数函数。 原型:int printf(const char * format, ...); 参数format表示如何来格式字符串的指令,… 表示可选参数,调用时传递给"..."的参数可有可无,根据实际情况而定。 系统提供了vprintf系列格式化字符串的函数,用于编程人员封装自己的I/O函数。 int vprintf / vscanf(const char * format, va_list ap); // 从标准输入/输出格式化字符串 int vfprintf / vfsacanf(FILE * stream, const char * format, va_list ap); // 从文件流 int vsprintf / vsscanf(char * s, const char * format, va_list ap); // 从字符串 // 例1:格式化到一个文件流,可用于日志文件 FILE *logfile; int WriteLog(const char * format, ...) { va_list arg_ptr; va_start(arg_ptr, format); int nWrittenBytes = vfprintf(logfile, format, arg_ptr); va_end(arg_ptr); return nWrittenBytes; } … // 调用时,与使用printf()没有区别。 WriteLog("%04d-%02d-%02d %02d:%02d:%02d %s/%04d logged out.", nYear, nMonth, nDay, nHour, nMinute, szUserName, nUserID); 同理,也可以从文件中执行格式化输入;或者对标准输入输出,字符串执行格式化。 在上面的例1中,WriteLog()函数可以接受参数个数可变的输入,本质上,它的实现需要vprintf()的支持。如何真正实现属于自己的可变参数函数,包括控制每一个传入的可选参数。 二、 va函数的定义和va宏 C语言支持va函数,作为C语言的扩展--C++同样支持va函数,但在C++中并不推荐使用,C++引入的多态性同样可以实现参数个数可变的函数。不过,C++的重载功能毕竟只能是有限多个可以预见的参数个数。比较而言,C中的va函数则可以定义无穷多个相当于C++的重载函数,这方面C++是无能为力的。va函数的优势表现在使用的方便性和易用性上,可以使代码更简洁。C编译器为了统一在不同的硬件架构、硬件平台上的实现,和增加代码的可移植性,提供了一系列宏来屏蔽硬件环境不同带来的差异。 ANSI C标准下,va的宏定义在stdarg.h中,它们有:va_list,va_start(),va_arg(),va_end()。 // 例2:求任意个自然数的平方和: int SqSum(int n1, ...) { va_list arg_ptr; int nSqSum = 0, n = n1; va_start(arg_ptr, n1); while (n > 0) { nSqSum += (n * n); n = va_arg(arg_ptr, int); } va_end(arg_ptr); return nSqSum; } // 调用时 int nSqSum = SqSum(7, 2, 7, 11, -1); 可变参数函数的原型声明格式为: type VAFunction(type arg1, type arg2, … ); 参数可以分为两部分:个数确定的固定参数和个数可变的可选参数。函数至少需要一个固定参数,固定参数的声明和普通函数一样;可选参数由于个数不确定,声明时用"…"表示。固定参数和可选参数公同构成一个函数的参数列表。 借助上面这个简单的例2,来看看各个va_xxx的作用。 va_list arg_ptr:定义一个指向个数可变的参数列表指针; va_start(arg_ptr, argN):使参数列表指针arg_ptr指向函数参数列表中的第一个可选参数,说明:argN是位于第一个可选参数之前的固定参数,(或者说,最后一个固定参数;…之前的一个参数),函数参数列表中参数在内存中的顺序与函数声明时的顺序是一致的。如果有一va函数的声明是void va_test(char a, char b, char c, …),则它的固定参数依次是a,b,c,最后一个固定参数argN为c,因此就是va_start(arg_ptr, c)。 va_arg(arg_ptr, type):返回参数列表中指针arg_ptr所指的参数,返回类型为type,并使指针arg_ptr指向参数列表中下一个参数。 va_copy(dest, src):dest,src的类型都是va_list,va_copy()用于复制参数列表指针,将dest初始化为src。 va_end(arg_ptr):清空参数列表,并置参数指针arg_ptr无效。说明:指针arg_ptr被置无效后,可以通过调用 va_start()、va_copy()恢复arg_ptr。每次调用va_start() / va_copy()后,必须得有相应的va_end()与之匹配。参数指针可以在参数列表中随意地来回移动,但必须在va_start() … va_end()之内。 三、 编译器如何实现va 例2中调用SqSum(7, 2, 7, 11, -1)来求7, 2, 7, 11的平方和,-1是结束标志。 简单地说,va函数的实现就是对参数指针的使用和控制。 typedef char * va_list; // x86平台下va_list的定义 函数的固定参数部分,可以直接从函数定义时的参数名获得;对于可选参数部分,先将指针指向第一个可选参数,然后依次后移指针,根据与结束标志的比较来判断是否已经获得全部参数。因此,va函数中结束标志必须事先约定好,否则,指针会指向无效的内存地址,导致出错。 这里,移动指针使其指向下一个参数,那么移动指针时的偏移量是多少呢,没有具体答案,因为这里涉及到内存对齐(alignment)问题,内存对齐跟具体使用的硬件平台有密切关系,比如大家熟知的32位x86平台规定所有的变量地址必须是4的倍数(sizeof(int) = 4)。va机制中用宏_INTSIZEOF(n)来解决这个问题,没有这些宏,va的可移植性无从谈起。 首先介绍宏_INTSIZEOF(n),它求出变量占用内存空间的大小,是va的实现的基础。 #define _INTSIZEOF(n) ((sizeof(n)+sizeof(int)-1)&~(sizeof(int) - 1) ) #define va_start(ap,v) ( ap = (va_list)&v + _INTSIZEOF(v) ) //第一个可选参数地址 #define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) //下一个参数地址 #define va_end(ap) ( ap = (va_list)0 ) // 将指针置为无效 下表是针对函数int TestFunc(int n1, int n2, int n3, …) 参数传递时的内存堆栈情况。(C编译器默认的参数传递方式是__cdecl。) 对该函数的调用为int result = TestFunc(a, b, c, d. e); 其中e为结束标志。 在VC等绝大多数C编译器中,默认情况下,参数进栈的顺序是由右向左的,因此,参数进栈以后的内存模型如下图所示:最后一个固定参数的地址位于第一个可变参数之下,并且是连续存储的。 |——————————————————————————| |最后一个可变参数 | ->高内存地址处 |——————————————————————————| ................... |——————————————————————————| |第N个可变参数 | ->va_arg(arg_ptr,int)后arg_ptr所指的地方, | | 即第N个可变参数的地址。 |——————————————— | …………………………. |——————————————————————————| |第一个可变参数 | ->va_start(arg_ptr,start)后arg_ptr所指的地方 | | 即第一个可变参数的地址 |——————————————— | |———————————————————————— ——| | | |最后一个固定参数 | -> start的起始地址 |—————————————— —| ................. |—————————————————————————— | | | |——————————————— |-> 低内存地址处 参数在堆栈中分布,位置 在进程中,堆栈地址是从高到低分配的.当执行一个函数的时候,将参数列表入栈,压入堆栈的高地址部分,然后入栈函数的返回地址,接着入栈函数的执行代码, 这个入栈过程,堆栈地址不断递减,一些黑客就是在堆栈中修改函数返回地址,执行自己的代码来达到执行自己插入的代码段的目的. 总之,函数在堆栈中的分布情况是:地址从高到低,依次是:函数参数列表,函数返回地址,函数执行代码段. 堆栈中,各个函数的分布情况是倒序的.即最后一个参数在列表中地址最高部分,第一个参数在列表地址的最低部分.参数在堆栈中的分布情况如下: 最后一个参数 倒数第二个参数 ... 第一个参数 函数返回地址 函数代码段 从上图中可以很清楚地看出va_xxx宏如此编写的原因。 1. va_start。为了得到第一个可选参数的地址,我们有三种办法可以做到: A) = &n3 + _INTSIZEOF(n3) // 最后一个固定参数的地址 + 该参数占用内存的大小 B) = &n2 + _INTSIZEOF(n3) + _INTSIZEOF(n2) // 中间某个固定参数的地址 + 该参数之后所有固定参数占用的内存大小之和 C) = &n1 + _INTSIZEOF(n3) + _INTSIZEOF(n2) + _INTSIZEOF(n1) // 第一个固定参数的地址 + 所有固定参数占用的内存大小之和 从编译器实现角度来看,方法B),方法C)为了求出地址,编译器还需知道有多少个固定参数,以及它们的大小,没有把问题分解到最简单,所以不是很聪明的途径,不予采纳;相对来说,方法A)中运算的两个值则完全可以确定。va_start()正是采用A)方法,接受最后一个固定参数。调用 va_start()的结果总是使指针指向下一个参数的地址,并把它作为第一个可选参数。在含多个固定参数的函数中,调用va_start()时,如果不是用最后一个固定参数,对于编译器来说,可选参数的个数已经增加,将给程序带来一些意想不到的错误。(当然如果你认为自己对指针已经知根知底,游刃有余,那么,怎么用就随你,你甚至可以用它完成一些很优秀(高效)的代码,但是,这样会大大降低代码的可读性。) 注意:宏va_start是对参数的地址进行操作的,要求参数地址必须是有效的。一些地址无效的类型不能当作固定参数类型。比如:寄存器类型,它的地址不是有效的内存地址值;数组和函数也不允许,他们的长度是个问题。因此,这些类型时不能作为va函数的参数的。 2. va_arg身兼二职:返回当前参数,并使参数指针指向下一个参数。 初看va_arg宏定义很别扭,如果把它拆成两个语句,可以很清楚地看出它完成的两个职责。 #define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) //下一个参数地址 // 将( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )拆成: /* 指针ap指向下一个参数的地址 */ 1. ap += _INTSIZEOF(t); // 当前,ap已经指向下一个参数了 /* ap减去当前参数的大小得到当前参数的地址,再强制类型转换后返回它的值 */ 2. return *(t *)( ap - _INTSIZEOF(t)) 回想到printf/scanf系列函数的%d %s之类的格式化指令,我们不难理解这些它们的用途了- 明示参数强制转换的类型。 (注:printf/scanf没有使用va_xxx来实现,但原理是一致的。) 3.va_end很简单,仅仅是把指针作废而已。 #define va_end(ap) (ap = (va_list)0) // x86平台 四、 简洁、灵活,也有危险 从va的实现可以看出,指针的合理运用,把C语言简洁、灵活的特性表现得淋漓尽致,叫人不得不佩服C的强大和高效。不可否认的是,给编程人员太多自由空间必然使程序的安全性降低。va中,为了得到所有传递给函数的参数,需要用va_arg依次遍历。其中存在两个隐患: 1)如何确定参数的类型。 va_arg在类型检查方面与其说非常灵活,不如说是很不负责,因为是强制类型转换,va_arg都把当前指针所指向的内容强制转换到指定类型; 2)结束标志。如果没有结束标志的判断,va将按默认类型依次返回内存中的内容,直到访问到非法内存而出错退出。例2中SqSum()求的是自然数的平方和,所以我把负数和0作为它的结束标志。例如scanf把接收到的回车符作为结束标志,大家熟知的printf()对字符串的处理用'\0'作为结束标志,无法想象C中的字符串如果没有'\0', 代码将会是怎样一番情景,估计那时最流行的可能是字符数组,或者是malloc/free。 允许对内存的随意访问,会留给不怀好意者留下攻击的可能。当处理cracker精心设计好的一串字符串后,程序将跳转到一些恶意代码区域执行,以使cracker达到其攻击目的。(常见的exploit攻击)所以,必需禁止对内存的随意访问和严格控制内存访问边界。 五、 Unix System V兼容方式的va声明 上面介绍可变参数函数的声明是采用ANSI标准的,Unix System V兼容方式的声明有一点点区别,它增加了两个宏:va_alist,va_dcl。而且它们不是定义在stdarg.h中,而是varargs.h中。 stdarg.h是ANSI标准的;varargs.h仅仅是为了能与以前的程序保持兼容而出现的,现在的编程中不推荐使用。 va_alist:函数声明/定义时出现在函数头,用以接受参数列表。 va_dcl:对va_alist的声明,其后无需跟分号";" va_start的定义也不相同。因为System V可变参数函数声明不区分固定参数和可选参数,直接对参数列表操作。所以va_start()不是va_start(ap,v),而是简化为va_start(ap)。其中,ap是va_list型的参数指针。 Unix System V兼容方式下函数的声明形式: type VAFunction(va_alist) va_dcl // 这里无需分号 { // 函数体内同ANSI标准 } // 例3:猜测execl的实现(Unix System V兼容方式),摘自SUS V2 #include #define MAXARGS 100 / * execl(file, arg1, arg2, ..., (char *)0); */ execl(va_alist) va_dcl { va_list ap; char *file; char *args[MAXARGS]; int argno = 0; va_start(ap); file = va_arg(ap, char *); while ((args[argno++] = va_arg(ap, char *)) != (char *)0) ; va_end(ap); return execv(file, args); } 六、 扩展与思考 个数可变参数在声明时只需"..."即可;但是,我们在接受这些参数时不能"..."。va函数实现的关键就是如何得到参数列表中可选参数,包括参数的值和类型。以上的所有实现都是基于来自stdarg.h的va_xxx的宏定义。 <思考>能不能不借助于va_xxx,自己实现VA呢?,我想到的方法是汇编。在C中,我们当然就用C的嵌入汇编来实现,这应该是可以做得到的。至于能做到什么程度,稳定性和效率怎么样,主要要看你对内存和指针的控制了。 参考资料 1.IEEE和OpenGroup联合开发的Single Unix specification Ver3;BR> 2.Linux man手册; 3.x86汇编,还有一些安全编码方面的资料。
文章评论(0条评论)
登录后参与讨论