一.电源噪声的基本概念
电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。
根据传播方向的不同,电源噪声可分为两大类:
①. 一类是从电源进线引入的外界干扰;
②. 一类是由电子设备产生并经电源线传导出去的噪声。
从形成特点看,噪声干扰分串模干扰与共模干扰两种。
①. 串模干扰是两条电源线之间(简称线对线)的噪声。
②. 共模干扰则是两条电源线对大地(简称线对地)的噪声。
二.开关电源的干扰
开关电源属于强干扰源,其本身产生的干扰直接危害着电子设备的正常工作。因此,抑制开关电源本身的电磁噪声,同时提高其对电磁干扰的抗扰性,在设计和开发过程中需要特别的关注。
开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。
2.1 内部元器件干扰
开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。
①.基本整流器的整流过程是产生EMI最常见的原因。这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。
②.功率变换电路是开关稳压电源的核心。产生这种脉冲干扰的主要元件为:
a.开关管。开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,开关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。
b.高频变压器。 开关电源中的变压器,用作隔离和变压,但由于漏感的原2 因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。
c.整流二极管。整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十MHz。
d.电容、电感器和导线。开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。
2.2 外部干扰
开关电源外部干扰可以以“共模”或“差模”方式存在。干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,电源干扰的类型如下表所示。
表 1-1 开关电源外部干扰类型表
序号 | 干扰类型 | 典型的起因 |
1 | 跌落 | 雷击;重载接通;电网电压低下 |
2 | 失电 | 恶劣的气候;变压器故障;其他原因的故障 |
3 | 频率偏移 | 发电机不稳定;区域性电网故障 |
4 | 电气噪声 | 雷达;无线电讯号;电力公司和工业设备的飞弧;转换器和逆变器 |
5 | 浪涌 | 突然减轻负载;变压器的抽头不恰当 |
6 | 谐波失真 | 整流;开关负载;开关型电源;调速驱动 |
7 | 瞬变 | 雷击;电源线负载设备切换;功率因素补偿电容切换;空载电动机的断开 |
在表1-1中的几种干扰中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。
三.抑制干扰的一些措施
抑制电磁干扰应该从骚扰源、传播途径和受扰设备人手。首先应该抑制骚扰源,直接消除干扰原因;其次是消除骚扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。常用的方法是屏蔽、接地和滤波。
3.1 屏蔽
采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。
3.2 接地
所谓接地,就是在两点间建立传导通路,以便将电子设备或元器件连接到某些叫作“地”的参考点上。接地是开关电源设备抑制电磁干扰的重要方法,电源某些部分与大地相连可以起到抑制干扰的作用。在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该环路时将产生磁感应噪声。实际上很难实现“一点接地”,因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。
3.3 滤波
滤波是抑制传导干扰的有效方法,在设备或系统的电磁兼容设计中具有极其重要的作用。EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。
四.电磁干扰滤波器
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
|
4.1直流电网电磁干扰滤波器
4.1.1类型
4.1.2 基本电路
图4-1:简易式单级EMI滤波器电路
用户71098 2008-4-1 00:05
用户105837 2008-3-31 18:49