原创 继电器

2009-3-20 10:19 4118 8 8 分类: 模拟
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />

继电器<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />


一、继电器主要参数的测试


1、吸合值、释放值


继电器的不吸合值、吸合值、保持值、释放值测试按图1所示的测试程序图进行。该测试程序为生产单位和使用单位共同遵守的统一方法,其最大优点是测试的参数重复性好,它并不表示实际使用中继电器要先磁化,后工作


2023a74d-134c-46a8-ade8-deb77006af6d.JPG


按一般要求,交流继电器的吸合电压不大于其额定电压的85%,直流继电器的吸合电压不大于其额定电压的75%(有的为80%)。保持电压,直流继电器通常为30%-40%额定电压,交流继电器保持电压要大些。直流继电器的释放电压通常不小于10%额定电压,极限低温下不小于5%额定电压。交流继电器的释放电压通常为30%左右额定电压极限低温下不小于10%的额定电压。


2、线圈电阻


线圈电阻的测量可用电压、电流法和电桥法。用电压、电流法测量时,应尽量避免或减小电压表、电流表内阻的影响,测试过程要尽量短,以避免线圈温升。线圈电阻对测量时的环境温度比较敏感,所以测试前1-2小时内产品要置于要测试的环境下并(最好)不对线圈施加激励。测试数值Ra应换算成基准温度(一般为<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />20)下的值,换算公式为:


Ra=R0[1+a(Ta-20)]
式中:Ta为环境温度(


      a为电阻温度系数(铜导线的温度系数是0.004/


3、接触电阻


测量动断触点接触电阻时继电器处于不激励状态;测量动合触点接触电阻时继电器处于额定激励状态。接触电阻的测量采用电压电流表法。测量时,加到触点上的负载(阻性)应符合表7规定。测试部位在引出端离其根部4mm之内。负载应在触点达稳定闭合之后施加,触点断开之前切除。


 




 


7 


继电器国标规定测量接触电阻(或压降)的负载大小


应用类别


测试负载(阻性)


CA0


≤30mV    ≤10mA


10mA × 30mV


CA1


30mV~60V0.01~0.1A


10mA × 100mV


CA2


5~250V    0.1~1.0A


100mA × 24V


CA3


5~600V   0.1~100A


1A × 24V


4、绝缘性能


继电器绝缘电阻的测试一般都使用兆欧表,被测继电器应置于优质绝缘板上,测试电压应符合各产品技术要求规定,一般加电压2s之后的最小值即为被测值。


介质耐压测试时在最高电压(110%额定电压)下保持1~5s,有争议时应以额定电压保持1min为准。


5、时间参数


时间参数的测量电路如图2示所示,也可以用其他合适的电子仪器、仪表代替,但触点负载应为阻性,测动作、释放及回跳时间用10mA × 6v(阻性负载),测稳定时间负载为50μA × 50mV(阻性负载)。仪器的分辩率为1μS


测量动作时间应以额定工作电压的下限激励,测量释放时间应从额定工作电压的上限切除。


6、外形尺寸


外形尺寸检查的依据是外形图,测量引出端位置尺寸时,应在距底板3毫米范围内测量,测量时所施外力不得造成继电器的任何损伤。


若无特殊规定,第6.1~6.5条测量均在正常气候条件下进行:温度15~35摄氏度,相对温度45%-75%,大气压力86.7~106.7Kpa.


 


 

 


二、继电器控制电路


1能带动继电器工作的CMOS集成块


在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5MDC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下:


ab16cb8a-527f-4de0-93e9-3eb0730fffdc.JPG


CD4066是四双向模拟开关,集成块SCR1SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块脚导通,+12V→K1→集成块电源负极使K1吸合;反之当SCR1输入低电平时,集成块脚开路,K1失电释放,SCR2SCR4输入高电平或低电平时状态与SCR1相同。


电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。


2低电压下继电器的吸合措施


常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。


3cf0f0e0-f992-459a-a1d5-2ab35ddd139e.JPG


工作原理:如图所示。V1为单结晶体管BT33C,它与R1R2R3C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J线圈一端呈负电位。R3上的正脉冲另一路经VD2C3去触发可控硅导通,SCR阴极也即J线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J11闭合,松开AN1后,J11自保。J12V1V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2J失电释放,J11断开,整个控制电路失电。


制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2C1C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。


 


3继电器的三种附加电路


继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式:


261bc43b-5225-4f13-bac2-4e2f2fc9fd43.JPG


1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。


2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。


3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VTce两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。


 


4无电感式模拟继电器


本文介绍一种无电感式模拟继电器,其电路原理如下图所示。


c3d135bd-8bdb-4986-bfc7-18fe1a22d3d1.JPG


图中,220V电源经负载RLR1D1D4ZD1,为Q4Q3在正负半周轮流提供偏置;同时经R3D5D8为光电耦合器Q1提供电源。当前级TTL电路输出高电平信号时,光电耦合器在市电正半周内导通,于是在R5两端产生压降,触发SCR导通,负载RL得电工作。整个电路的功能如同一只继电器,但不会产生反向感应电压,也就避免了负载被高反压击穿损坏的可能。C1R6为脉冲吸收元件,R3起限流作用。


为避免RL为感性负载时,可控硅的电压与光电耦合器电源产生的90°相位,该电路中光电耦合器的电源取自SCR的阳极而不直接取自市电电源。


 


5继电器电路小改进


继电器常安装在电器设备的内部,其工作状态不直观,笔者将其作如下图改进。在线圈两端接发光二极管VD1,当控制电压为正时,三极管导通,继电器J吸合,同时发光二极管被点亮,表明继电器线圈已加上电源。发光二极管可装在外壳显眼之处。


bb1e8d4a-f325-4b41-bdd0-65541ffb263b.JPG


 


6继电器的正确使用


1、继电器额定工作电压的选择


继电器额定工作电压是继电器最主要的一项技术参数。在使用继电器时,应该首先考虑所在电路(即继电器线圈所在的电路)的工作电压,继电器的额定工作电压应等于所在电路的工作电压。一般所在电路的工作电压是继电器额定工作电压的0.86。注意所在电路的工件电压千万不能超过继电器额定工作电压,否则继电器线圈容易烧毁。另外,有些集成电路,例如NE555电路是可以直接驱动继电器工作的,而有些集成电路,例如COMS电路输出电流小,需要加一级晶体管放大电路方可驱动继电器,这就应考虑晶体管输出电流应大于继电器的额定工作电流。


2、触点负载的选择


触点负载是指触点的承受能力。继电器的触点在转换时可承受一定的电压和电流。所以在使用继电器时,应考虑加在触点上的电压和通过触点的电流不能超过该继电器的触点负载能力。例如,有一继电器的触点负载为28V(DC)×10A,表明该继电器触点只能工作在直流电压为28V的电路上,触点电流为10A,超过28V10A,会影响继电器正常使用,甚至烧毁触点。


3、继电器线圈电源的选择


这是指继电器线圈使用的是直流电(DC)还是交流电(AC)。通常,初学者在进行电子制作活动中,都是采用电子线路,而电子线路往往采用直流电源供电,所以必须是采用线圈是直流电压的继电器。


 

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
8
关闭 站长推荐上一条 /3 下一条