所需E币: 0
时间: 2024-1-30 12:04
大小: 2.79KB
今天给大家讲讲关于AI,打通视觉,NLP,机器学习,深度学习,推荐搜索,AIGC,大模型等等这些当下最热门技术,我将从以下9个方面给大家做详细讲解关于AI人工智能算法工程师的相关知识。阶段一:从AI全面认知到基础夯实-行业认知&Python&必备数学阶段二:从AI核心技术理论体系构建到项目实战:机器学习&深度学习阶段三:构建AI的数据驱动力--数据预处理工程阶段四:AI深度学习框架实战-Pytorch从基础到进阶阶段五:AI核心算法+方法——经典深度学习模型实战阶段六:AI计算机视觉核心技术与项目实战-工业&医疗与直播&自动驾驶等主流领域阶段七:AIGC火热领域技术与项目-文本图像生成&扩散模型等阶段八:NLP自然语言处理与LLM大语言模型应用实战阶段九:AI工程师入行&转化&就业&面试指导首先,我们先来说说什么是人工智能:人工智能(ArtificialIntelligence),简称为AI,是一门集多学科于一体的综合性技术科学。它的核心目的是创造出能够模拟人类思维能力的机器,使其具备感知、思考和决策的能力。自然语言处理(NaturalLanguageProcessing,简称NLP)是计算机科学和人工智能领域的一个重要分支。它的核心目标是让计算机能够理解和生成人类自然语言,这包括了文本、语音等多种形式的人类语言输入输出。机器学习是一门人工智能的科学,其核心在于计算机通过对数据的学习和经验积累来自动提升性能。深度学习是机器学习的一个子领域,它受到人类大脑神经网络的启发,旨在模拟人类的学习过程。生成式人工智能——AIGC(ArtificialIntelligenceGeneratedContent),是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。大模型是指包含超大规模参数(通常在十亿个以上)的神经网络模型。接下来,我们讲解环境的安装配置:安装CPU版本PyTorch#创建PyTorch环境condacreate-ntorch2python==3.10#进入环境condaactivatetorch2#安装cpu版本pytorchpipinstalltorch==2.0.0torchvision==0.15.1torchaudio==2.0.1--index-urlhttps://download.pytorch.org/whl/cpu验证CPU版是否安装成功importtorchprint(torch.__version__)print(torch.cuda.is_available())输出2.0.0+cpuFalseTensor存储的数值Tensor可以用多种方法进行初始化。下面给出例子:直接传数据Tensor可以直接从数据进行创建,数据类型会自动适应。importtorchdata=[[1,2],[3,4]]x_data=torch.tensor(data)print(x_data)使用Numpy数据可以通过Numpy矩阵中进行创建importtorchimportnumpyasnpnp_array=np.array([[1,2], [3,4]])x_np=torch.from_numpy(np_array)print(x_np)利用已有tensor根据已有的数据形式(形状,数据类型),创建出新的tensorimporttorchdata=[[1,2],[3,4]]x_data=torch.tensor(data)#保持了x_data的数据属性与形状x_ones=torch.ones_like(x_data) print(f"OnesTensor:\n{x_ones}\n")#保持x_data的形状,重新定义x_data的数据属性x_rand=torch.rand_like(x_data,dtype=torch.float) print(f"RandomTensor:\n{x_rand}\n")最后到案例部分:案例1:导入两个列表到Dataset举一个例子,fromtorch.utils.dataimportDataset,DataLoaderclassMyDataset(Dataset):#继承自Dataset def__init__(self,):#定义数据集包含了什么东西 self.x=[iforiinrange(10)] self.y=[2*iforiinrange(10)] def__len__(self):#返回数据集的总长度 returnlen(self.x) def__getitem__(self,idx):#当数据集被读取时,需要返回的数据 returnself.x[idx],self.y[idx]my_dataset=MyDataset()my_dataloader=DataLoader(my_dataset)forx_i,y_iinmy_dataloader: print("x_i=",x_i,"y_i=",y_i)输出x_i= tensor([0]) y_i= tensor([0])x_i= tensor([1]) y_i= tensor([2])x_i= tensor([2]) y_i= tensor([4])x_i= tensor([3]) y_i= tensor([6])x_i= tensor([4]) y_i= tensor([8])x_i= tensor([5]) y_i= tensor([10])x_i= tensor([6]) y_i= tensor([12])x_i= tensor([7]) y_i= tensor([14])x_i= tensor([8]) y_i= tensor([16])x_i= tensor([9]) y_i= tensor([18])案例2:导入Excel数据到Dataset中dataset只是一个类,因此数据可以从外部导入,我们也可以在dataset中规定数据在返回时进行更多的操作,数据在返回时也不一定是有两个。fromtorch.utils.dataimportDataset,DataLoaderimportpandasaspdclassMyDataset(Dataset):#继承自Dataset def__init__(self,data_loc):#定义数据集包含了什么东西 data=pd.read_excel(data_loc) self.x1,self.x2,self.x3,self.x4,self.y=data['x1'],data['x2'],data['x3'],data['x4'],data['y'] def__len__(self):#返回数据集的总长度 returnlen(self.x1) def__getitem__(self,idx):#当数据集被读取时,需要返回的数据 returnself.x1[idx],self.x2[idx],self.x3[idx],self.x4[idx],self.y[idx]if__name__=='__main__': data_loc="模仿数据读取.xlsx" my_dataset=MyDataset(data_loc) my_dataloader=DataLoader(my_dataset,batch_size=2) forx1_i,x2_i,x3_i,x4_i,y_iinmy_dataloader: print(f"x1_i={x1_i},x2_i={x2_i},x3_i={x3_i},x4_i={x4_i},y_i={y_i}")