tag 标签: ofdm

相关帖子
相关博文
  • 热度 4
    2023-11-2 14:59
    1636 次阅读|
    1 个评论
    问题:dbm、dbc、db的区别是什么? 答:dB是功率增益的单位,表示一个相对值。当计算A的功率相比于B大或小多少个dB时,可按公式10 lg A/B计算。 dBm是一个表示功率绝对值的单位,计算公式为:10lg功率值/1mW。 dBc也是一个表示功率相对值的单位,与dB的计算方法完全一样。一般来说,dBc相对于载波(Carrier)功率而言。在许多情况下,用来度量载波功率的相对值,如度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。 相位噪声采用 dBc(相对于载波的dB 数)为单位,即单边带噪声功率相对于载波功率的比值,并归一化至 1 Hz 噪声功率带宽。有时在特定的频偏上指定,或者用一条曲线来表示一个频偏范围内的相位噪声特性。 推荐阅读: 信号发生器的频谱纯度 频谱纯度技术指标包括相位噪声、杂散和谐波性能。 什么叫频谱纯度? 评估连续波信号质量好坏的一个重要指标是频谱纯度。频谱纯度指的是输出信号的理想程度。理想的连续波信号在频域上是一条单脉冲,没有噪声的存在。 但实际上信号发生器由非理想元器件制成,因此输出的连续波信号会受到噪声的影响,偏离理想状态,因此会产生噪声和失真。 频谱纯度的技术指标包含相位噪声,杂散和谐波性能。 相位噪声 什么是相位噪声? 相位噪声指标主要在频域上进行描述,用一定频偏(offset)下单边带(SSB)噪声功率谱密度与载波功率比值来表示,该指标等效为被测信号随机相位误差的功率谱密度。 相位噪声是振荡器信号周围噪声频谱的频域视图。它描述的是振荡器的频率稳定性。频率稳定性可以分为两个部分:长期稳定性和短期稳定性,如下面的图6.2所示。 图 6.2 长期和短期频率稳定性 下面的表6.1显示了长期频率稳定性与短期频率稳定性之间的比较。短期变化会导致相位噪声,而长期漂移会影响精度。 图 6.1 长期和短期频率稳定性 如何定义相位噪声数量?最常用的方法是:在距离主频率的特定频率处,确定1 Hz带宽内所包含的单边带 (SSB) 功率值。 请见下面的公式: 图 6.3 显示了信号发生器的 SSB 相位噪声测量结果。黄色迹线表示瞬时功率测量结果,而蓝色迹线表示结果平均值。 图 6.3 SSB 相位噪声测量结果,包括对数图和十进制表 要想有效测量相位噪声,您使用的信号分析仪的相位声性能应至少比信号的预期相位声低 10 dB。否则,相位声测量结柴会受到频谱分析仪的本振相嗪的影响。 相位噪声有什么作用 了解了相位噪声对测量结果的影响,您可以为测试选择恰当性能的分析仪。相位噪声过高,会掩盖主频附近的微弱信号。 相位噪声主要讲三个应用场景 雷达应用 一是雷达,雷达以特定频率发射脉冲,并测量返回脉冲的频率变化。相位噪声过高,会掩盖主频附近的微弱信号,接收机就无法识别运动目标。 雷达系统需要出色的相位噪声性能。雷达以特定频率发射脉冲,并测量每个返回脉冲的频率变化。根据多普勒效应,可以通过频率变化计算出目标的速度。如果目标移动非常缓慢,那么返回脉冲的频移很小。 在图6.4中,移动目标的返回脉冲是“有用信号",固定目标(如地面)的返回脉冲是“干扰信号"。如果有用的下变频信号被相位噪声掩盖,那么雷达接收机就无法识别运动目标。 图 6.4 不良的 LO 相位噪声影响了接收机灵敏度。 数字调制 数字调制中比如QPSK ,LO 信号的相位噪声转换成了混频器的输出。对于高阶的调制方案,相位噪声会导致符号重叠,导致误码率增加。 图 6.5 显示了正交相移键控 (QPSK) 数字接收机的简化方框图。LO 信号的相位噪声转换成了混频器的输出。相位噪声导致在星座图上的符号(绿色)发生径向涂抹。对于更高阶调制方案〈如 256 QAM)中间距较小的符号来说,径向涂抹可能会重叠,并会导致接收机灵敏度不佳。 图6.5 简化的数字接收机方框图 正交频分复用 (OFDM) 正交频分复用OFDM 是广泛用于宽带数字通信的制方案。OFDM 使用许多较为接近的正交子载波信号来同时传输数据(如图6.6 所示)。本地振荡器的相位噪声会将子载波的相位噪声扩展到其他子载波,对其他子载波产生干扰。该相位噪声将会导致 OFDM 信号的调制质量降低。 正交频分复用OFDM是使用许多较为接近的正交子载波信号来同时传输数据,本地振荡器的相位噪声会将子载波的相位噪声扩展到其他子载波,对其他子载波产生干扰。相位噪声会在OFDM系统中引入公共相位误差和载波间干扰,破坏子载波间的正交性,从而导致系统性能下降。 图 6.6:OFDM 信号使用相位噪声性能较差的本振进行上变频 精密的信号发生器支持您在合成器部分调整相位声,以而降低信号发生器的相位噪声,并帮助评测接收枧设计的灵敏度。
  • 热度 28
    2013-11-6 15:26
    1760 次阅读|
    4 个评论
    这两天特别兴奋,为奇妙的想法,为感受到数学的美妙,为自己十多年来一直工作的领域如今的一点点领悟而兴奋。 接着上回讲现场存在各种各样的干扰问题。现场调试遇到这样的现实存在的干扰,刺激大脑综合各种线索,于是对于如何抗干扰,形成了豁然开朗的领悟。 LTE系统里面,同频组网。相邻小区发送的参考信号位置可能重叠,可能交叉。重叠在一起的参考信号,直接对接收端的信道估计产生干扰,而不重叠的参考信号对接收端的数据本身产生干扰。这两种情况都需要对干扰信号进行估计与重构,从接收的信号里面把他们消除掉。这样才可以做到较好的均衡结果。 而这个对参考信号进行估计与重构的算法,听起来是蛮复杂的,运算量会很高。而数学的美妙就体现出来了。为什么大学里面会讲信号与系统,数字信号分析的课程呢?其实在这里就用上了。信号的估计,用相关运算就可以了。相关运算本身运算量太大,用fft变换来做就可以了。FFT的运算量会比直接相关运算本身的小几个数量级。而OFDM系统本身就是一个时域与频域系统不断倒腾的系统,这些看似非常相似的算法,用在不同的地方,稍微调整一下,新的抗干扰算法就能衍生出来了。同时,对信号的功率,干扰的功率,信号的时偏,邻小区的时偏等估计都能同时计算出来。更细节的数学推导等就不在此赘述了。 如果芯片的架构采用SDR的架构,那么就更加美妙了。因为新的算法可以在短时间内得以实现,并立即在现网中得以验证。芯片投片的成本太高了。而SDR的架构却帮助系统设计者在算法优化与芯片开发成本之间找到了平衡。于是,更坚定自己这些年的坚持是正确的。  
  • 热度 29
    2012-8-24 13:32
    2194 次阅读|
    0 个评论
        OFDM将一个数据块(在时间域,也就是一个OFDM符号)全部分配给一个用户,而OFDMA则将不同的子载波组(在频率域)分配给不同的用户。这样,多个用户可以同时使用空间信道。由于OFDM在某个时点,是将K个子载波都分配给一个用户,如果多个用户打算共享OFDM系统,他们必须在时间域排队等候,类似一种时分复用的机制。     OFDMA不是这样,它不是在时间域顺次将OFDM符号分配给不同的用户,而是直接在频域将不同的子载波分配给不同的用户。在OFDMA示意图中,高速基带数据符号流的速率仍然是Rs sps,即每个数据符号持续1/Rs秒。这个高速数据流分成J组数据符号,每组数据符号携带L个数据符号。每个数据符号组被分配给不同的用户,因此一共有J*L个数据符号。     串并转换器将高速流转换成J*L个独立的低速子流,每个子流的速率是Rs/JL sps。因此在任何一个时点,串并转换器的输出端都并发存在J*L个数据符号。这J*L个数据符号被映射到相应的子载波(子载波被分配给不同的用户)。在频率域,J*L个数据符号被分为J组,分给J个用户。     J*L(=K)个映射过的数据符号并行通过IDFT变换器,产生K个转换后的数据符号,随后通过并串转换器。这K个转换后的数据符号组成的串行数据块构成一个OFDM符号。连续的OFDM符号以Rs/K的速率出现在并串转换器的输出端,每个OFDM符号的持续时间是K/Rs 秒。     “OFDMA频域分析”显示了高速流、低速子流和最后发送的信号。从频域看,最后发送的信号分为7组数据符号,或者分为7个OFDM符号。子载频之间存在重叠,但是是正交的。每个用户的数据信息通过连续的L个子载波承载发送。本土显示的是“连续子载波承载”模式,当然,用户数据信息也可以通过随机的方式分配到子载波上,这种方法叫“分布式子载波承载”。     除了拥有OFDM频谱效率高、调制方式简单的优点外,OFDMA另外有两个优点: 1,频率分集增益。这存在于“分布式子载波承载”模式; 2,多用户增益(multiuser diversity)。这存在于“连续子载波承载”模式。由于不同的用户在不同的位置体验到的信道相应是不同的,对于信道条件好的用户,系统可以提高分配给该用户的子载波的性能指标,如提高吞吐率,从而改善系统的整体效率。     以上是理想情况下的OFDM和OFDMA。在实际的无线环境中,时间域的数据块间干扰(IBI, interblock interference)和频率域的载频间干扰(ICI, intercarrier interference)会对系统的性能产生不利影响。    1,时间域IBI:将高速流拆分成一系列低速子流后,每个子流的持续时间达到了TsK, TsK远大于信道时延扩展(τ) ,很好地克服了ISI(符号间干扰)。然而,尽管这项技术大大消除了一个OFDM符号内相邻两个数据符号之间的ISI,它不能消除相邻OFDM符号之间干扰。为了避免相邻两个OFDM符号之间的干扰,必须在OFDM符号的最后引入“隔离时间”,以免这个符号的多径延迟分量对下一个OFDM符号产生干扰。这个“隔离时间”又叫做“cyclic prefix”。只要cyclic prefix大于时延扩展(τ),相邻OFDM符号之间就没有干扰,就不存在IBI。     2,频率域ICI:对于同一个子载波,信号发射器与信号接收器不一定能做到完全的频率同步,这种频率偏差会造成正交子载波之间失去正交性,产生ICI。
  • 热度 29
    2012-8-23 13:28
    1250 次阅读|
    0 个评论
        OFDM和FDM一样,通过多个子载波传送高速数据流。不同的是,OFDM解决了因隔离带宽引起的频谱效率低的问题。不同于传统FDM使用K个本地振荡器(local oscillators,LO)和K个乘法器(multiplier)来完成调制,OFDM使用了一种新的数学技术,叫离散傅立叶变换(discrete Fourier transform, DFT),来产生子载波。用这种方式产生子载波不需要隔离带宽,子载波在频带上可以排列得更加紧密。子载波之间在一段时间内(比如一个OFDM符号的持续时间)是正交的。      OFDM示意图中,高速数据符号流的速率是Rs sps,每个数据符号的持续时间是1/Rs秒。高速数据符号流由一个个数据符号块组成,每个数据符号块包含K个数据字符。同时,子载波的数量也是K个。串并转换器将高速流转换成K个独立的低速符号流,每个低速流的速率是Rs/K sps 。也就是说,每个数据符号块的K个符号被分割送到K个不同的子载波,而在串并转换器的输出口,是一组K个并行的数据符号。     这组并行的K数据符号被逆离散傅立叶变换器(IDFT)进行转换,再送到并串转换器。并串转换器输出的由K个IDFT转换过的符号组成的块,就是一个OFDM符号(OFDM symbol)。并串转化器输出端的连续OFDM符号的速率是Rs/K(OFDM symbol per second),也就是说,每个OFDM符号的持续时间是K/Rs秒。需要注意的是,OFDM符号不同于data符号,data符号是一个或者多个用户比特的编码,是串并转换器的输入。而OFDM符号是并串转换器的输出。     OFDM频域分析图显示了高速数据流、低速数据子流和最后实际发送的信号流的频谱。在发送的OFDM信号中,子载波在频域存在重叠,但每个子载波的零交叉点位于相邻两个子载波的峰值点。由于OFDM通过子载波的峰值点来恢复数据符号,因此其邻近的子载波对其没有干扰,也就是说相邻两个子载波是正交的——这就是正交FDN(OFDM)的由来。     OFDM频域分析图画了K个不同的子载波,这K个子载波都被分配给一个用户,且构成一个OFDM符号。也就是说,一个数据块(也就是一个OFDM符号)只用于传送一个用户的信息比特。     和传统FDM一样,OFDM能强壮地抵御ISI(符号间干扰)和多径衰落,能够基于子载波调整调制方式和纠错编码方式,能够简化均衡器的设计。OFDM还有两个传统FDM没有的优势: 1,OFMD的调制方式比较简单,不需要K个数模转换器和RF调制器,而是用IDFT和DFT加以替代。 2,OFDM的频谱利用效率比较高;
  • 热度 19
    2012-8-21 13:13
    2384 次阅读|
    3 个评论
        一,ITU-R M.2134对下一代无线网络的要求是:     1,扇区(cell)的平均频率利用效率是在市区(urban)无线环境下达到:下行链路 2.2bps/Hz/cell(4个发射天线和2个接收天线,即4*2 MIMO);上行链路 1.4bps/Hz/cell(2个发射天线和4个接收天线,即2*4 MIMO)。     2,理想情况下的频率利用峰值是:下行链路 15bps/Hz/(4个发射天线和4个接收天线,即4*4 MIMO);上行链路 6.75bps/Hz/cell(2个发射天线和4个接收天线,即2*4 MIMO)。     3,支持基准带宽的分级可扩展性,支持最高40 MHz的带宽;鼓励更宽的带宽,比如通过频率汇聚(frequency aggregation)技术为单个用户分配100 MHz的带宽。     如果是40MHz的带宽,ITU-R M.2134的第1和第2个要求的执行结果是:1,下行链路的平均流量达到88Mbps/cell,上行链路的平均流量达到56Mbps/cell;2,理论峰值传输速率达到下行600Mbps,上行270Mbps。    第4代无线广域网络启用了OFDM和OFDMA技术,取代了3G使用的DSSS技术。类似的技术取代在无线局域网中已经发生了,IEEE 802.11b是基于DSSS技术的,而802.11g和802.11n是基于OFDM技术。OFDM技术在多径、频率选择性衰落比较明显的无线环境中提供高速数据传输方面有独特的优势。     OFDM被定义成一个实现多路通信的方法,利用这个方法,一个高速数据流被分成多个低速子数据流,这些低速子数据流被许多子载波同时传送,而且子载波传送数据时彼此之间不会产生干扰。     二,为啥4G选择OFDM和OFDMA?     要了解OFDM和OFDMA,先要了解FDM。 传统的频分复用方法(Frequency Division Multiplex, FDM)如图“频分复用系统”所示。发射器(transmitter)的输入端是一串高速基带数据字符流(数据流的速率是Rs,symbols per second, sps)。这个高速基带数据字符流包含了若干个数据字符块,每个数据字符块包含L个数据字符。     一个串行转并行(serial-to-parallel, S-to-P)的转换器将这个高速数据流转换成K个分开的低速数据子流,每个低速数据子流的速率是Rs/K sps 。同时,串并转换器将包含L个字符的大数据块打散成K个数据子块,每个数据字块携带L/K个字符。这些低速数据子流穿过数模转换器(D-to-A),用设定好的sinusoid exp(-j2πfkt)进行调制,其中fk是为每个低速数据子流分配的子载波频率。经过调制,这K个经过调制的子载波(在K个不同的频率上)汇集起来,汇集后的信号被发射到空中。      为了最小化子载波之间的干扰,相邻子载波之间必须有隔离频带。由于隔离频带的存在,K个子载波占用的总带宽大于单个子载波的带宽的K倍。尽管存在K个子载波,FDM把所有K个子载波都用于传递一个用户的数据。FDM有三个好处: 1,有利于克服符号间干扰(Intersymbol interference, ISI)和多径衰落; 2,可以基于子载波改变调制方法和编码方式; 3,降低对信号接收端的均衡器的要求;     符号间干扰(Intersymbol interference, ISI) 如图“符号间干扰”所示。 传送K个分离的、窄带的子载波能更有效地克服ISI和多径衰落。在时间域,多径效应导致接收信号的到达时间的“离散”效应,信号到达时间的离散也被称作信道的时延扩展(τ)。   高速无线通信系统中,符号速率Rs和符号的持续时间Ts成反比。符号速率Rs越高,符号的持续时间Ts越小。符号速率Rs高到一定程度,Ts有可能显著地小于信道时延扩展(τ),这种情况下,多径引起的时延会让上一个符号泄漏到下一个符号,并对下一个符号产生干扰。这种现象叫做ISI。ISI是任何一个高速无线通信系统都必须解决的问题。   用窄带子载波承载发射信号能很好地解决ISI问题,因为放大了符号的时间宽度。降低符号的速率,就意味着扩大符号的持续时间。降低符号速率可以通过将高速符号流分成很多低速符号子流来实现,每个符号子流的速率是Rs/K,因此低速符号子流的每个符号的持续时间是TsK。 这样,由于子字符流的符号持续时间明显大于信道时延扩展(τ),即TsKτ,每个符号延迟分量对下一个符号几乎没有影响,每个符号受到的ISI影响就会显著减少。       上述问题也可以在频域进行分析。在频域,多径效应导致在不同的频段产生不同的衰落特性,甚至产生相消效应(也叫NULLs);因此多径衰落又叫做频率选择性衰落。一个频率选择性信道的特征参数是相干带宽Wc,在相干带宽的范围内,信道表现得相对比较平坦、比较固定。      使用一系列窄带子载波传送信号就能够克服频率选择性衰落。每个子载波的带宽都明显小于初始的宽带载波。每个子载波会遇到自己的衰落,但是只要每个子载波的带宽足够小(远远小于相干带宽Wc ),就可以认为子载波经历的是平坦衰落,也就是说窄带子载波受频率选择性衰落的影响很小。换句话说,只要子载波的带宽Rs/K Wc,频率选择项衰落就被认为是消除了。     能够强壮地应对ISI和多径衰落,是使用多个窄带子载波的无线通信系统的关键优势。OFDM和OFDMA充分利用了这一优势,这是4G无线通信系统选择OFDM和OFDMA的主要原因,因为OFDM和OFDMA能很好地帮助宽带信号克服多径衰落和ISI。     FDM能够基于子载波改变调制方法和编码方式。系统通过多个子载波传递数据符号时,在任何时候,有的子载波经历了衰落,有的子载波没有经历衰落。经历衰落的子载波可以求助于更强健的调制方式(比如QPSK)和低速率的纠错编码(比如1/3 convolutional code),以保证提高接收端无错接收数据符号的概率,代价是降低比特传送速率。那些几乎不受衰落影响的子载波,可以使用更有效率(当然对无线环境要求比较高)的调制方式(如16-QAM)和高速率的纠错编码(比如3/4 convolutional code),以提高比特传输速率。通过为每个子载波分配不同的调制方式和纠错编码,系统能够获得最佳的容量和性能表现。     FDM能够降低对信号接收端的均衡器的要求。 接收端需要用一个均衡器来均衡通道响应。当子载波是窄带时,均衡器比较简单,因为窄带意味着处理符号传送的时间比较长。在接收端,每个子载波都需要一个均衡器,因此一共有K个均衡器。       传统的多子载波FDM系统有两大缺点:1,信号发射器需要K个数模转换器和K个独立的射频调制器;2,FDM的频谱效率比较低,需要隔离频带分隔子载波。     有没有可能既充分利用FDM系统的优势,又规避FDM的缺点呢?答案是OFDM。         
相关资源