tag 标签: 功率器件

相关帖子
相关博文
  • 2024-7-23 14:23
    205 次阅读|
    0 个评论
    功率半导体器件静态特性测试挑战及应对测试方案
    功率半导体是电子产业链中最核心的一类器件, 能够实现电能转换和电路控制作用。功率半导体包括功率半导体分立器件(含模块)以及功率IC等。其中,功率半导体分立器件按照器件结构可分为二极管、晶闸管和晶体管等。 以MOSFET、IGBT以及SiC MOSFET为代表的功率器件需求旺盛。根据性能不同,广泛应用于汽车、充电桩、光伏发电、风力发电、消费电子、轨道交通、工业电机、储能、航空航天和军工等众多领域。 随着行业技术革新和新材料性能发展,功率半导体器件结构朝复杂化演进,功率半导体的村底材料朝大尺寸和新材料方向发展。以SiC(碳化硅)、GaN(氮化镓)为代表的第三代宽禁带半导体材料迅速发展,它们通常具有高击穿电场、高热导率、高迁移率、高饱和电子速度、高电子密度、高温稳定性以及可承受大功率等特点,使其在光电器件、电力电子、射频微波器件、激光器和探测器等方面展现出巨大的潜力。SiC(碳化硅)和GaN(氮化镓)电力电子器件也逐渐成为功率半导体器件的重要发展领城。另外,由于不同结构和不同衬底材料的功奉半导体电学性能和成本各有差异,在不同应用场景各具优势。 功率半导体的生产流程,主要包括设计验证、晶圆制造、封装测试三个主要环节,其中,每一个生产环节又包含若干复杂的工艺制程。 静态特性测试挑战 随着半导体制程工艺不断提升,测试和验证也变得更加重要。通常,主要的功率半导体器件特性分为静态特性、动态特性、开关特性。静态参数特性主要是表征器件本征特性指标,与工作条件无关的相关参数,如很多功率器件的的静态直流参数(如击穿电压、漏电流、阈值电压、跨导、压降、导通内阻)等。 功率半导体器件是一种复合全控型电压驱动式器件,兼有高输入阻抗和低导通压降两方面的优点:同时半导体功率器件的芯片属于电力电子芯片,需要工作在大电流、高电压、高频率的环境下,对芯片的可靠性要求较高,这给测试带来了一定的困难。市面上传统的测量技术或者仪器仪表一般可以覆盖器件特性的测试需求,但是宽禁带半导体器件SiC(碳化硅)或GaN(氮化镓)的技术却极大扩展了高压、高速的分布区间。如何精确表征功率器件高流/高压下的I-V曲线或其它静态特性,这就对器件的测试工具提出更为严苛的挑战。 更高精度更高产量 并联应用要求测试精度提离,确保一致性 终端市场需求量大,要求测试效率提高,UPH提升 更宽泛的测试能力 更宽的测试范围、更强的测试能力 更大的体二极管导通电压 更低的比导通电阻 提供更丰富的温度控制方式 更科学的测试方法 扫描模式对阈值电压漂移的影响 高压低噪声隔离电源的实现 高压小电流测量技术、高压线性功放的研究 低电感回路实现 柔性化测试能力 兼容多种模块封装形式 方便更换测试夹具 灵活配置,满足不同测试需求 PMST系列功率器件静态参数测试系统是武汉普赛斯正向设计,精益打造的高精密电压/电流测试分析系统,是一致能够提供IV,CV、跨导等丰富功能的综合测试系统,具有高精度、宽测量范围、模块化设计、轻松升级扩展等优势,旨在全面满足从基础功率二极管、MOSFET. BJT、 IGBT到宽禁带半导体SiC、GaN等晶圆、芯片、器件及模块的静态参数表征和测试,并具有卓越的测量效率、一致性与可靠性。让任何工程师使用它都能变成行业专家。 针对用户不同测试场景的使用需求,普赛斯全新推出PMST功率器件静态参数测试系统、PMST-MP功率器件静态参数半自动化测试系统、PMST-AP功率器件静态参数全自动化测试系统三款功事器件静态参数测试系统。 从实验室到小批量、大批量产线的全覆盖 从Si IGBT. SiC MOS到GaN HEMT的全国盖 从晶圆、芯片、器件、模块到PM的全覆盖 产品特点 高电压、大电流 具有高电压测量/输出能力,电压高达3500V(最大可扩展至10kV) 具有大电流测量/输出能力,电流高达6000A(多模块并联) 高精度测量 nA级漏电流, μΩ级导通电阻 0.1%精度测量 模块化配置 可根据实际测试需要灵活配置多种测量单元系统预留升级空间,后期可添加或升级测量单元 测试效率高 内置专用开关矩阵,根据测试项目自动切换电路与测量单元 支持国标全指标的一键测试 扩展性好 支持常温及高温测试可灵活定制各种夹具 硬件特色与性能优势 大电流输出响应快,无过冲 采用自主开发的高性能脉冲式大电流源、高压源,输出建立过程响应快、无过冲。测试过程中,大电流典型上升时间为15us,脉宽在50-500μs之间可调。采用脉冲大电流的测试方式,可有效降低器件因自身发热带来的误差。 高压测试支持恒压限流,恒流限压模式 采用自主开发的高性能高压源,输出建立与断开响应快、无过冲。在击穿电压测试中,可设定电流限制或者电压限值,防止器件因过压或过流导致损坏。 工作原理 传统测试系统的搭建,通常需要切换测试仪表和器件连接方式才能完成功率器件I-V和C-V整体参数测试,而PMST功率器件静态物数测试系统内置专用开关矩阵,根据测试项目自动切换电路与测量单元,同时可灵活定制各种夹具,从而可以实现I-V和C-V全参数的一键化测试。只需要设置好测试条件,将器件故置在测试夹具中,就可以帮助您快速高效且精准的完成测试工作。
  • 2024-5-17 14:44
    0 个评论
    2024年3月,合肥钧联汽车电子有限公司(以下简称“钧联电子”)自主研发的 SiC 功率模块(型号JLBH800N120SAM)顺利通过AQG-324车规级功率模块可靠性测试认证,广电计量提供本次AQG324车规级可靠性测试服务方案。 广电计量出具的AQG-324报告 广电计量合肥总经理王继忠为钧联电子总经理陈兆银颁发证 AQG-324测试认证内容包含模块测试、模块特性测试、环境测试、寿命测试四部分,涵盖了多个关键测试项目,每个项目都针对功率模块的不同方面进行严格测试评估,以确保功率模块在各种极端条件下都能稳定、高效地工作,满足车规级的高标准要求。 此前,广电计量为多家企业颁发AQG-324认证,均获得行业的广泛认可。经过2个月的严格测试,钧联电子自主研发设计的JLBH800N120SAM功率模块顺利通过了AQG-324车规级功率模块可靠性测试认证,成为一款在业内具有技术领先性的车规级HPD单面水冷SiC功率模块产品。这一测试认证的通过,不仅证明了钧联电子的产品具有卓越的可靠性和稳定性,也使其成为了业内为数不多具备从SiC功率模块到800V高压电控、电驱总成产品研发设计、测试验证、生产、销售能力的一体化公司。 双方合照 关于钧联电子 钧联电子作为一家致力于第三代半导体碳化硅(SiC)功率模块及电驱动系统的研发、制造、销售于一体的高科技企业,拥有碳化硅(SiC)功率模块、电控、集成式电驱动系统、智能控制软件等产品的研制能力。 多年来,公司深耕以第三代功率半导体碳化硅(SiC)为基础的800V高压电控,及其延伸的集成式电驱动系统和多融合动力域控领域,产品包括SiC功率模块和采用SiC功率模块的高压电控及电驱总成,为新能源汽车、eVTOL航空器等领域客户提供高效增值的解决方案,助力客户达到行业领先水平。 公司目前拥有行业领先的2.2万转高速电机测试台架、双测功机性能测试台架、盐雾/温湿振环境测试等实验设备,具备年产20万台电控、10万套电驱总成和20万只功率模块的生产能力,并已通过IATF 16949质量管理体系等认证。 广电计量半导体服务优势 工业和信息化部“面向集成电路、芯片产业的公共服务平台” 工业和信息化部“面向制造业的传感器等关键元器件创新成果产业化公共服务平台” 国家发展和改革委员会“导航产品板级组件质量检测公共服务平台” 广东省工业和信息化厅“汽车芯片检测公共服务平台” 江苏省发展和改革委员会“第三代半导体器件性能测试与材料分析工程研究中心” 上海市科学技术委员会“大规模集成电路分析测试平台” 在集成电路及SiC领域是技术能力最全面、知名度最高的第三方检测机构之一,已完成MCU、AI芯片、安全芯片等上百个型号的芯片验证,并支持完成多款型号芯片的工程化和量产。 在车规领域拥有AEC-Q及AQG324全套服务能力,获得了近50家车厂的认可,出具近400份AEC-Q及AQG324报告,助力100多款车规元器件量产。
  • 热度 4
    2024-4-23 13:51
    944 次阅读|
    0 个评论
    高温栅偏(High Temperature Gate Bias,HTGB)、高温反偏(High Temperature Reverse Bias,HTRB)、高温高湿反偏(High Humidity High Temperature Reverse Bias,H3TRB)等环境可靠性测试是进行功率器件寿命评估所必备的试验。由于不同标准下的试验条件并不相同,因而理解上述环境可靠性测试采用的加速老化物理模型是十分必要的。 温度场、湿度场和电场是老化测试的加速因子。温度场的作用是为了增大电子或空穴迁移率,增大碰撞电离或暴露污染离子,进而加速栅氧化层或钝化层老化;电场的作用是为了增大电子迁移速率或积聚污染离子,进而加速栅氧化层或钝化层老化。湿度场的作用是为了增大金属离子电化学迁移现象的速率,加快电树枝的形成,进而加速钝化层老化。一般情况下是上述电场、温度场和湿度场对功率期间进行共同作用。 本文基于JEDEC标准简要介绍了HTGB、HTRB、H3TRB试验所采用的加速老化模型与其适用范围。 HTGB加速老化模型 HTGB试验对应器件栅氧化层失效的加速老化物理模型为时间相关介质击穿(Time-Dependent Dielectric Breakdown,TDDB),涉及到电场与温度场共同作用。在TDDB模型中,基于F-N隧穿效应的1/E模型与基于电偶极子交互作用的E模型以其良好的物理机理及拟合结果被广泛应用。 HTRB加速老化模型 HTRB试验通过在高温下对器件施加阻断电压进而考核器件的终端和钝化层,同样涉及到电场与温度场的共同作用,其对应失效的加速老化物理模型为含电压加速因子的扩充Eyring模型与逆幂律模型。 H3TRB加速老化模型 H3TRB考核功率半导体器件漏极在电应力以及高温高湿条件下的可靠性,同样涉及到温度场、湿度场与电场的共同作用,相对应的加速老化物理模型为Peck模型与HV-H3TRB模型。 广电计量半导体服务优势 工业和信息化部“面向集成电路、芯片产业的公共服务平台” 工业和信息化部“面向制造业的传感器等关键元器件创新成果产业化公共服务平台” 国家发展和改革委员会“导航产品板级组件质量检测公共服务平台” 广东省工业和信息化厅“汽车芯片检测公共服务平台” 江苏省发展和改革委员会“第三代半导体器件性能测试与材料分析工程研究中心” 上海市科学技术委员会“大规模集成电路分析测试平台” 在集成电路及SiC领域是技术能力最全面、知名度最高的第三方检测机构之一,已完成MCU、AI芯片、安全芯片等上百个型号的芯片验证,并支持完成多款型号芯片的工程化和量产。 在车规领域拥有AEC-Q及AQG324全套服务能力,获得了近50家车厂的认可,出具近400份AEC-Q及AQG324报告,助力100多款车规元器件量产。
  • 热度 6
    2023-8-17 17:01
    538 次阅读|
    0 个评论
    汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片)。功率器件集成度较低,属于分立器件,主要包括电动车逆变器和变换器中的IGBT、MOSFET等。传感器则包括智能车上的雷达、摄像头等。 一、车规级MCU芯片 车规级MCU芯片是汽车电子控制单元(ECU)的重要组成部分,广泛用于车内几十种次系统中,如悬挂、气囊、门控等,是汽车电子系统内部运算、处理的核心。MCU芯片按照CPU一次处理数据的位数分为8、16和32位MCU。 (1)8位MCU:具有简单耐用、低价的优势,提供低端控制功能,如风扇控制、空调控制、雨刷、天窗、车窗升降、低端仪表板、集线盒、座椅控制、门控模块等。 (2)16位MCU:提供终端控制功能,用于动力系统和底盘控制系统,如引擎控制、齿轮与离合器控制和电子式涡轮系统、悬吊系统、电子式动力方向盘、扭力分散控制和电子泵、电子刹车等。 (3)32位MCU:工作频率最高,处理能力、执行效能更好,应用也更广泛,价格也在逐渐降低;提供高端控制功能,在实现L1和L2的自动驾驶功能中扮演重要角色。 据统计,每辆传统汽车平均用到70颗以上MCU,智能电动汽车则超300颗。不过随着整车电子架构的集中化趋势加速,单车MCU的用量和种类也将出现“缩减”。MCU的性能将进一步提升,高端MCU将逐渐替代部分低端MCU的需求。 二、AI芯片 AI芯片是未来智能化汽车的“大脑”。这类芯片一般是一种集成了CPU、图像处理GPU、音频处理DSP、深度学习加速单元NPU以及内存和各种I/O接口的SOC芯片,不同于以CPU运算为主的MCU。在汽车中,主要在智能座舱和自动驾驶两个方面使用SoC芯片。 未来智能座舱所代表的“车载信息娱乐系统+流媒体后视镜+抬头显示系统+全液晶仪表+车联网系统+车内乘员监控系统”等多重体验,都将依赖于智能座舱的SoC芯片。 自动驾驶芯片是指可实现高级别自动驾驶的SoC芯片,通常具有“CPU+XPU”的多核架构。L3及以上的车端中央计算平台需要达到500+TOPS的算力,仅具备CPU处理器的芯片无法满足这一需求。自动驾驶的SoC芯片上通常需要集成除CPU之外的一个或多个XPU来进行AI运算。用于AI运算的XPU可以选择GPU/FPGA/ASIC等。 GPU、FPGA和ASIC在自动驾驶AI运算领域各有优势:CPU通常是SoC芯片的控制中心,其优点在于调度、管理、协调能力强,但计算能力相对有限。而对于AI计算,人们通常使用GPU/FPGA/ASIC进行加强:1)GPU适合数据密集型应用进行计算和处理,尤其擅长处理CNN/DNN等图形类机器学习算法。2)FPGA对RNN/LSTM和强化学习等顺序类机器学习算法具有明显优势。3)ASIC是面向特定用户算法需求设计的专用芯片,具有体积更小、重量更轻、功耗更低、性能提高、保密性增强以及成本降低等优点。 三、功率器件 功率半导体器件是用于电力转换和控制的半导体器件。其典型应用场景包括变频、变压、变流、功率放大和功率管理等,主要类型为IGBT和MOSFET。在具体应用上,燃油车一般使用低压MOSFET,其衬底材料为Si。相比之下,BEV对功率器件的性能要求更高,IGBT和高压MOSFET更为主流。 IGBT(绝缘栅双极型晶体管)是一种全控型电压驱动的大功率电力电子器件,由双极性晶体管(BJT)和绝缘栅场效应管(MOS)组成。IGBT的特点是兼具了BJT的导通电压低、通态电流大、损耗小和MOS的开关速度高、输入阻抗高、控制功率小、驱动电路简单等优点。在电动汽车中,IGBT的应用主要集中在三个方面:首先,在电控系统中,IGBT模块将直流转换为交流,驱动汽车电机(电控模块);其次,在车载空调控制系统中,负责小功率直流/交流逆变,该模块的工作电压不高,单价相对也低一些;最后,在充电桩中,IGBT模块被用作开关使用。 IGBT最常见的形式是模块,主要由IGBT芯片、FWD芯片、主端子、辅助端子、浇注封装材、绝缘基板、金属基、树脂外盖和树脂外壳等组成。多个芯片以绝缘方式组装到金属基板上,采用空心塑壳封装,与空气的隔绝材料是高压硅脂或者硅脂,以及其他可能的软性绝缘材料。 ​ 从功能安全角度来看,IGBT模块具有以下优点:(1)多个IGBT芯片并联,使得IGBT的电流规格更大;(2)多个IGBT芯片按照特定的电路形式组合,如半桥、全桥等,可以减少外部电路连接的复杂性;(3)多个IGBT芯片处于同一个金属基板上,等于是在独立的散热器与IGBT芯片之间增加了一块均热板,工作更可靠;(4)模块中多个IGBT芯片之间的连接与多个分立形式的单管进行外部连接相比,电路布局更好,引线电感更小。因此,模块的外部引线端子更适合高压和大电流连接。 四、传感器类芯片 汽车传感器主要分为两大类,一类是车辆感知传感器,包括速度/位置传感器、低/中压压力传感器、高压传感器、加速度传感器、角速度传感器、磁力计和温度传感器。另一类是环境感知传感器,包括氧、气体传感器、车载摄像头、超声波雷达、毫米波雷达和激光雷达。 ​ 传感器类芯片 五、存储器 汽车传感器存储器分为闪存和内存,其中闪存包括NANDFlash和NORFlash,内存包括DRAM和SRAM。随着智能化的发展,ADAS和信息娱乐系统产生的数据将不断增加,根据CounterpointResearch的估计,未来十年,单车存储容量将达到2TB-11TB。
  • 热度 10
    2023-7-6 10:36
    473 次阅读|
    0 个评论
    DTS+TCB预烧结银焊盘工艺提高功率器件通流能力和功率循环能力
    GVF9800预烧结银焊片 DTS+TCB 预烧结银焊盘工艺提高功率器件通流能力和功率循环能力 在新能源汽车、 5G 通讯、光伏储能等终端应用的发展下, SiC/GaN 等第三代半导体材料水涨船高,成为时下特别火热的发展领域之一。终端应用市场对于高效率、高功率密度、节能省耗的系统设计需求日益增强,与此同时,各国能效标准也不断演进,在此背景下, SiC 凭借耐高温、开关更快、导热更好、低阻抗、更稳定等出色特性,正在不同的应用领域发光发热。 新型 SiC 芯片可用 IPM 、 TPAK 方式封装,以应用于电动车逆变器 SiC 导线架技术为例,导线架 Copper Clip 和 SiC 芯片连接采用烧结银 AS9385 连接技术,可实现高可靠、高导电的连接的需求,很多 Tier 1 的控制器公司和 Tier 2 功率模组制造商,在汽车模组中均或多或少的采用该烧结银技术,目前烧结银技术主要用于对可靠性和散热高要求的市场,在引线框架制作上除了要提供高可靠度的镀银品质以符合烧结银的搭接技术以外,由于烧结银的膜厚只有 20um-50um ,不像传统的锡膏搭接方式可透过锡膏量的调整补正搭接面共平面度不佳造成的搭接问题,烧结银的搭接技术对于搭加处的共平面度要求公差只有 20um ,对于这种复杂的折弯成型式技术是一大挑战。 在成型技术也相当困难,由于电镀银是局部镀银,相较于全镀,部分镀银技术很难,必须做模具,且放置芯片处用局部银,一个导线架搭两个芯片,芯片必须採局部银,其他导线架必须用镍钯金,材料差异对导线架制作是很大的技术挑战。 众所周知,在单管封装中,影响器件 Rth(j-c) 热阻的主要是芯片、焊料和基板。 SiC 芯片材料的导热率为 370W/(m.K) ,远高于 IGBT 的 Si(124W/(m.K)) ,甚至超过金属铝 (220W/(m.K)) ,与 Lead Frame 的铜 (390 W/(m.K)) 非常接近。而一般焊料的导热率才 60 W/(m.K) 左右,典型厚度在 50-100um ,所占整个器件内部 Rth(j-c) 热阻之权重,是不言而喻的。所以,单管封装中引入扩散焊“ Diffusion Soldering ”,省了芯片与 lead frame 之间的焊料,优化了器件热阻。以 1200V/30mOhm 的 SiC MOSFET 单管为例,基于 GVF 预烧结银焊片工艺 ,相比当前焊接版的 TO247-3/4L ,可降低约 25% 的稳态热阻 Rth(j-c) ,和约 45% 的瞬态热阻。 目前,客户存的最大痛点是键合时良率低,善仁新材推出的预烧结焊片主要优势是:提高芯片的通流能力和功率循环能力,保护芯片以实现高良率的铜线键合。 功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率、直流交流转换等。可分为功率 IC 和功率分立器件两大类,二者集成为功率模块(包含 MOSFET/IGBT 模块、 IPM 模块、 PIM 模块)。 随着电力电子模块的功率密度、工作温度及其对可靠性的要求越来越高,当前的封装材料已经达到了应用极限。 善仁新材的 GVF9700 无压 预烧结焊盘 和 GVF9800 有压预烧结焊盘,为客户带来多重便利,包括无需印刷、点胶或干燥, GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 可以 将铜键合线和烧结工艺很好结合在一起,同时具有较高的灵活性,可以 同时让多个键合线连接在预烧结焊盘上来进行顶部连接。 GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 不仅能显著提高芯片连接的导电性、导热性,以及芯片连接的可靠性,并对整个模块的性能进行优化,还能帮助客户提高生产率,降低芯片的破损率,加速新一代电力电子模块的上市时间。 GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding )) 能够将电力电子模块的使用寿命延长 50 多倍,并确保芯片的载流容量提高 50% 以上。 GVF 预烧结银焊片 还可以使结温超过 200°C 。因此, GVF 预烧结银焊片 可大幅降低功率限额,或者在确保电流相同的情况下缩小芯片尺寸,从而降低电力成本。 SHAREX 的 GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 是结合了烧结银,铜箔和其他材料的一种 复合材料 ,由以下四个部分组成:具有键合功能的铜箔;预涂布 AS9385 系列烧结银;烧结前可选用临时固定的胶粘剂;保护膜或者承载物。 GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 和金,银,铜表面剪切强度都很大。 GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 的使用方法为: Pick & Place ; GVF 预烧结银焊片工艺( DTS+TCB ( Die Top System +Thick Cu Bonding ) 可以广泛用于: Die Attach, Die Top Attach, Spacer Attach 等。 采用了 GVF 预烧结银焊片工艺的 Diffusion Soldering (扩散焊)技术。简而言之,就是在特定温度和压力条件下,使得 SiC 芯片的背面金属,与 Lead Frame 表面金属产生原子的相互扩散,形成可靠的冶金连接,以釜底抽薪之势,一举省去中间焊料,所谓大道至简、惟精惟一,惟 GVF 预烧结银焊片 。一言以蔽之:采用了 GVF 预烧结银焊片工艺时, 降低器件稳态和瞬态热阻,同时提高器件可靠性。 在能源效率新时代, SiC 开始加速渗透电动汽车、光伏储能、电动车充电桩、 PFC/ 开关电源、轨道交通、变频器等应用场景,接下来将逐步打开更大的发展空间。
相关资源