原创 IBIS模型介绍

2010-3-14 00:25 6704 7 7 分类: PCB

1、IBIS模型
    随着数字系统性能的不断提升,信号输出的转换速度也越来越快,在信号完整性分析中,不能简单的认为这些高速转换的信号是纯粹的数字信号,还必须考虑到它们的模拟行为。为了在PCB进行生产前进行精确的信号完整性仿真并解决设计中存在的问题,要求建立能描述器件I/O特性的模型。这样,Intel最初提出了IBIS的概念,IBIS就是I/O BufferInformation Specification的缩写。
    为了制定统一的IBIS格式,EDA公司、IC供应商和最终用户成立了一个IBIS格式制定委员会,IBIS公开论坛也随之诞生。在1993年,格式制定委员会推出了IBIS的第一个标准Version 1.0,以后不断对其进行修订,现在的版本是1999年公布的Version 3.2,  这一标准已经得到了EIA的认可,被定义为ANSI/EIA-656-A标准。每一个新的版本都会加入一些新的内容,但这些新内容都只是一个IBIS模型文件中的可选项目而不是必须项目,这就保证了IBIS模型的向后兼容性能。
    现在,已经有几十个EDA公司成为IBIS公开论坛的成员,支持IBIS的EDA公司提供不同器件的IBIS模型以及软件仿真工具。有越来越多的半导体厂商开始提供自己产品的IBIS模型。


2、IBIS与SPICE的比较
    SPICE作为一种通用的电路模拟语言,最早由加州大学伯克利分校发明。SPICE模型是对电路中实际的物理结构进行描述。由于其精确性和多功能性,已经成为电子电路模拟的标准语言。SPICE模型目前有两个主要的版本:HSPICE和PSPICE,HSPICE主要应用于集成电路设计,而PSPICE主要应用于PCB板和系统级的设计。
    采用SPICE模型在PCB板级进行SI分析时,需要集成电路设计者和制造商提供能详细准确的描述集成电路I/O单元子电路的SPICE模型和半导体特性的制造参数。由于这些资料通常都属于设计者和制造商的知识产权和机密,所以只有较少的半导体制造商会在提供芯片产品的同时提供相应的SPICE模型。SPICE模型的分析精度主要取决于模型参数的来源(即数据的精确性),以及模型方程式的适用范围。而模型方程式与各种不同的数字仿真器相结合时也可能会影响分析的精度。有的半导体生产者在向外界提供SPICE模型时,常常会对一些涉及到知识产权的部分进行‘清理’,这样也会导致仿真结果的不准确。
    IBIS模型不对电路的具体结构进行描述,而只是采用I/V和V/t表的形式来描述数字集成电路I/O单元和引脚的特性。半导体厂商很容易在不透露自己的知识产权的同时为客户提供这种模型。
    IBIS模型的分析精度主要取决于I/V和V/T表的数据点数和数据的精确度。由于基于IBIS模型的PCB板级仿真采用查表计算,因而计算量较小,通常只有相应的SPICE模型的1/10到1/100。用它进行仿真的速度要比用SPICE模型快很多。随着电路板的设计越来越复杂,使用SPICE模型仿真会花去很长的时间,而使用IBIS模型使得对整个电路板上的系统进行仿真成为可能。虽然IBIS模型没有SPECE模型那么精确,但对于系统级分析而言已经是完全足够了。
    使用IBIS模型的另外一个优点就是,很多的IBIS模型都是由实际的器件得到,这样,一旦有了完全的IBIS数据,那么仿真得到的数据就与实际的器件有了直接的关系。
    总之,由于IBIS模型的方便,快捷,以及具有必要的精确度,越来越多的半导体厂商都愿意向客户免费提供自己产品的IBIS模型。
    由于目前还没有一种统一的模型来完成所有的PCB板级信号完整性分析,因此在高速数字PCB板设计中,需要混合各种模型来最大程度地建立关键信号和敏感信号的传输模型。
    对于分立的无源器件,可以寻求厂家提供的SPICE模型,或者通过实验测量直接建立并使用简化的SPICE模型。对于关键的数字集成电路,则必须寻求厂家提供的IBIS模型。目前大多数集成电路设计和制造商都能够通过web网站或其它方式在提供芯片的同时提供所需的IBIS模型。对于非关键的集成电路,若无法得到厂家的IBIS模型,还可以依据芯片引脚的功能选用相似的或缺省的IBIS模型。当然,也可以通过实验测量来建立简化的IBIS模型。对于PCB板上的传输线,在进行信号完整性预分析及解空间分析时可采用简化的传输线SPICE模型,而在布线后的分析中则需要依据实际的版图设计使用完整的传输线SPICE模型。


3、IBIS模型的构成
        IBIS(Input/Output Buffer Information Specification)模型是基于V/I曲线的对I/O Buffer快速准确建模的方法,其目的是提供一种集成电路制造商与仿真软件供应商以及设计工程师之间相互交换电子元件仿真数据的标准方法。IBIS是一种行为模型,它不是从要仿真的元件的结构出发定义的,而是从元件的行为出发定义的。IBIS本身是一种标准的文本格式,它记录驱动器和接收器的不同参数,如驱动源输出阻抗、上升/下降时间以及输入负载等参数,但它不说明这些记录参数是如何使用的。
    IBIS模型分为驱动器模型和接收器模型,如下图示:
 
 
Pull up/pull down:标准输出缓冲器的上拉和下拉晶体管,用直流I/V数据表来描述它们的行为。
 Power clamp/gnd clamp:静电放电和钳位二极管,用直流I/V数据表来描述它们的行为。
 Ramp:表示输出从一个逻辑状态转换到另一个逻辑状态,用dV/dt来描述。
 C_comp:硅晶圆电容,它是不包括封装参数的总输出电容。
 R_pkg/L_pkg/C_pkg:封装带来的寄生电阻、电感和电容。。
无论是驱动器模型还是接收器模型都是由两部分组成的:缓冲器结构模型([model] section)和封装因子([component]&[pin] section)。


IBIS文件结构
IBIS文件包括了从行为上模拟一个器件的输入、输出和I/O缓冲器所需要的数据,它以ASCII的格式保存。IBIS文件的格式如下图示:
IBIS文件主要由三部分构成:
1. 文件头描述:包括IBIS版本、文件名以及资料来源、修订等信息。
2. 元件描述:该部分包含从数据手册中得到的元件引脚、封装电特性等信息,用关键字[package]和[pin]说明。
3. 模型描述:该部分描述电流、电压曲线和开关特性,模型用[pull up]、[Pull down]、[gnd clamp]、[power clamp]和[ramp]等关键字说明,[model]后的参数定义了模型的类型(输入、输出、I/O、开漏极等)以及它的输入/输出电容。
IBIS模型有3组可能的值:min、max以及typ。
IBIS文件中的V/I曲线数据包括:pull up、pull down、power clamp、gnd clamp四种,V/I曲线数据描述电压从-Vcc~+2Vcc的对应电流的情况,输入芯片的电流为正。


IBIS模型类型:
1. 输入(input):作为接收器,必须定义输入门限(Vinh、Vinl)、Power clamp和gnd clamp;
2. 输出(output):作为驱动器,必须定义power clamp、gnd clamp、pull up、pull down、ramp(dV/dt),此外可以有输出高低电平门限(不属于IBIS模型规范);
3. I/O:根据使能既可以作为驱动器也可以作为接收器;
4. 三态(3-state):通常作为驱动器,也可通过使能端关闭;
5. open_drain:典型的驱动器模型,有一个开路的上拉侧;
6. I/O_open_drain:具有I/O和open_drain双重特性;
7. open_sink:驱动器模型,有一个开路的上拉侧,由用户提供一个上拉的电阻和一个电压连接;
8. I/O_open_sink:具有I/O和open_sink双重特性;
9. open_source:驱动器的模型,有一个开路的下拉侧,由用户提供一个下拉电阻和地或电源的电压连接;
10. I/O_open_source:具有I/O和open_source双重特性;
11. ECL:Emitter Coupled Logic,包括input_ECL、output_ECL、I/O_ECL、3-state_ECL;
12. 终端terminator:通常是输入模型,当没有数字逻辑门限时作为模拟的负载效应,如电阻、电容、二极管等。


原文:http://www.dzjs.net/html/PCBjishu/2007/0903/2558.html


    http://www.dzjs.net/html/EDAjishu/2009/0715/3855.html

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
7
关闭 站长推荐上一条 /6 下一条