原创 二极管开关过程与功耗(补充)

2010-6-8 15:56 2122 15 19 分类: 消费电子

《功率二极管的功耗计算》

这是最开始的博文,有些不清楚的地方。

我今天看到一本书,《功率晶体管和开关二极管的应用技巧》 (http://www.docin.com/p-34194261.html)

一本80 年代末翻译的书,里面很详细的阐述了功率晶体管和开关二极管设计的过程。很严谨也很详实,不是偶然间翻到,我们可能没有可能去搞清楚这个过程了。

这一段是我整理在我写的文章里面的,希望能把这个过程写清楚:
  1.jpg

 

二极管在较高频率下应用的时候,需要注意二极管除了我们知道的正常的导通状态和正常的截至状态以外,在两种状态之间,转换过程中还存在着开启效应和关断效应。二极管在开关的过程中其电流和电压的变化过程如图所示:

① 开启效应:表征着二极管由截止过渡到导通的特性,从反向电压VR正向导通,跳变至最高电压V?P,然后慢慢降低为二极管正向导通电压VF,达到稳定状态的过程称为二极管的正向恢复过程。这一过程所需要的时间称为正向恢复时间。开启过程的过程是对对反偏二极管的结电容充电,使二极管的电压缓慢上升,因PN结耗尽区的工作机理,使电压的上升比电流的上升要慢很多。

② 关断效应:表征着二极管由导通过渡到截止的特性,从二极管正向导通电压VF,跳变至负向最高电压VFF,然后反向截止达到稳定状态VR的过程称为二极管的反向恢复过程。这一过程所需要的时间称为反向恢复时间。由于电荷存储效应,二极管正向导通时,会存在非平衡少数载流子积累的现象。在关断过程中存储电荷消失之前,二极管仍维持正偏的状态。为使其承受反向阻断的能力,必需将这些少子电荷抽掉。反向恢复时间分为存储时间Ts与下降时间Tf,存储时间时二极管处在抽走反向电荷的阶段,在这段时间以后电压达到反向最大值,二极管可开始反向阻断,下降时间则是对二极管耗尽区结电容进行充电的过程,直到二极管完全承受外部所加的反向电压,进入稳定的反向截止状态。

二极管的暂态开关过程就是PN结电容的充、放电过程。二极管由截止过渡到导通时,相当于电容充电,二极管由导通过渡到截止时,相当于电容放电。二极管结电容越小,充、放电时间越短,过渡过程越短,则二极管的暂态开关特性越好。

正向过程损耗:

2.jpg


这是一个估计的结果

反向过程损耗
计算方法也是估计的(这是续流电路的情况)

3.jpg


实际的功率二极管用在不同的地方,其结果也是并不相同的,按照书中整流和续流两块去分析,我可能将之整理一下效果较好。感兴趣的同志们可以去看看,挺详细和详实的一本书。

整个开关过程,实质上,就是认为对结电容进行操作。如果没有电容,整个开关过程是非常理想的,也就等效成为一个理想的开关了。

补充(引用网上不明作者的图和过程分析):


由于二极管外加正向电压时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。

4.jpg


空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在 LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。

当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:
① 在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;
② 与多数载流子复合。

5.jpg


在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与RL相比可以忽略,所以此时反向电流IR= (VR+VD)/RL。VD表示PN结两端的正向压降,一般 VR>>VD,即 IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定。经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tt,二极管转为截止。由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。

文章评论4条评论)

登录后参与讨论

用户1190942 2011-5-10 10:25

hao

用户1381393 2010-6-26 12:37

谢谢

用户1376456 2010-6-25 14:58

good show

用户1526745 2010-6-11 18:28

值得分享!多谢!

用户1012893 2010-6-11 08:59

谢谢!好东东.
相关推荐阅读
yzhu05_597603602 2014-12-26 11:43
电池管理芯片分析
  在这里首先需要向Davide Andrea / LiIonBMS.com表达敬意,他把大部分能收集的数据都收集到了。从他的角度来看,给出了参考建议,也给出了ASIC的参数(http:...
yzhu05_597603602 2014-12-26 11:42
电池管理的架构概览
  今天开始对整个架构进行初步涉及,LT的工程师在《BATTERY MANAGEMENT ARCHITECTURES FOR HYBRID/ELECTRIC VEHICLES》一文中提及了四种...
yzhu05_597603602 2014-12-26 11:40
电池管理的未来可能的技术2
  朱玉龙 汽车电子设计 继续整理余下的部分,这里主要介绍采集部分比较有新意,如建模和控制和测试部分比较传统,就略去不提,有兴趣可以自行查找。 ...
yzhu05_597603602 2014-12-26 11:38
电池管理未来可能的技术1
  我在和同学王嵩聊的时候,谈到国内对于测控两端的投入太少。从汽车未来的发展方向而言,往智能化的路子,必须是从传感器、数据融合和有效控制开始的。这里,主要收集一些新的电池管理的技术,从美国的研...
yzhu05_597603602 2014-12-02 20:50
【一周推书】看得见的和看不见的
又到周五了,新年将近了。 今天推荐的是一本经济学的书籍,<看得見與看不見的>弗雷德里克·巴斯夏。在经济学领域,只能说是去理解不同人的想法,宏观看热闹,围观看各位老板...
yzhu05_597603602 2014-11-20 17:04
电池系统集合
感谢Google,费了2天的功夫,把30余款车的电池系统尽可能的从安装位置、电池系统外形、开盖照片、分解图、模块图和单体情况大概搜罗一下放在表格里面做对比。基本数据如下: 风冷vs液...
我要评论
4
15
关闭 站长推荐上一条 /2 下一条