时间:2011 年11 月17 日
地点:西安某公司
待测试设备:某电子设备电路板
测试仪器:泰克MDO4104-6 + 近场探头
面临的问题:
该电子设备为300MHz 频段专用的无线通信设备,EMC 认证没有问题,但该设备自身工作并不正常,以前曾用频谱仪配近场探头测试过,发现在嵌入式射频发射电路板内FPGA 处有较强的EMI 辐射,造成底噪升高,使得该通信设备发射信号信噪比降低,影响通信质量。多次整改设计方案,效果不明显。
实测过程:
既然客户已经测试过EMI,我们首先用MDO 进行验证,在0~330MHz 跨度内测试该电路板EMI 问题,果然发现底噪抬升明显,EMI 问题十分严重。用近场探头逐点探测,的确在该电路板FPGA 处底噪抬升最为明显,说明该电路EMI 源自此FPGA。此FPGA 面积不大,很容易屏蔽,因此通过EMC 认证没有问题,关键是此电路板射频射频输出信噪比差自身特性受影响。由于FPGA 是此电路板的心脏,一旦定型,很难改动,如果重新设计,等于是从头再来,不可接受。观察一段时间,我们发现该底噪抬升是随时间变化的,于是我们分别存储了底噪最高时和底噪最低时的两个结果如下:
此时为底噪较高时,达-65dBm。
此时为底噪较低时,最高底噪幅度不超过-80dBm。
对于幅度随时间变化的频谱,MDO 的优势在于调制域分析,为此我们打开MDO 幅度随时间变化曲线显示功能,用MDO 射频功率触发得到如下测试结果:
从测试结果看,触发点处底噪幅度最高,在280MHz以及432MHz 处达-59dBm。图中上半部分显示,突发幅度呈周期性变化,用MDO 时域光标,可以测试出其周期为94uS。我们移动代表频谱分析时间段的橙色条到突发幅度右侧的几条线处,得到测试结果如下:
此时底噪明显下降,280MHz 处为-71dBm,当我们再将频谱分析时间段右移至完全没有突发幅度处时,得到如下测试结果:
此时底噪已经降低到-85dBm 一下,原来280MHz 频点处被底噪淹没的-73dBm的信号此时已经显现出来。
由于该电路板EMI 呈周期性变化,既然FPGA 的设计难以在短时间内更改,我们能否通过有效的控制手段,让有用的射频信号在突发周期间隔中底噪较低的时刻发射,而在突发幅度时刻不发射有用信息?客户认为此方法可行。底噪呈周期性变化,必定与电路板中某种控制信号相关,虽然我们已经测试出突发底噪变化的周期,但如果我们不知道这种周期与哪种控制相关,上述设想就难以实现。客户对其内部控制时序相当熟悉,94uS 的周期刚好是该电路板高速USB 信号传输控制周期。为了验证这一假设,我们将MDO 示波器通道1 接到高速USB 控制测试点,同时测试射频频谱,得到如下结果:
以上测试结果充分证明了通道1 中的高速USB 信号与底噪突发抬升的规律相同,证明二者相关。高速USB的时序由嵌入式程序控制,因此只要在程序中控制射频在高速USB 信号发出后延迟50uS 发射,发射持续时间小于40uS 即可。
案例总结:
本案例利用MDO 跨域分析及调制域分析功能,成功地确认EMI 与高速USB 信号相关,通过时序控制,跨域有效避免以前难以解决的问题。
想了解更多测试测量最新资讯?想与测试测量专家互动?敬请关注泰克科技官方微博:http://weibo.com/tekchina
用户1272839 2013-10-11 13:49
用户1602177 2013-10-10 16:15