高速总线的速度和复杂度正在不断提升,并且提升速度有越来越快的趋势。为了提升通信速率,将多个高速串行总线并行组织起来使用,将会引起串扰现象。另一个 问题是符号间干扰(ISI)。铜线具有介电效应,数据速率越快,距离越长,信号衰减就会越严重。这些问题对系统设计都造成了很大影响。
泰克(Tektronix)公司BERTScope产品经理Allen谈到,串行技术演变到现在,25Gbps速率大概是铜线的极限。要达到更高的吞吐 率,需要采用并行拓扑结构。例如,为了达到100Gbps速率,可以采用4路25Gbps或10路10Gbps的方式来实现。将多路串行总线(如 Displayport或DDR)并行使用,就会产生串扰现象。在100Gbps的应用中如何克服这种串扰现象是一个比较大的挑战。
另一个问题符号间干扰与码型有关。一个很常用的测试码型是PRBS(伪随机二进制序列)。真实世界的码型是随机性的,但在做误码分析的时候不能采用随机码型,原因是误码仪必须要用一致的码型作比对,才能得到误码率。PRBS几乎考虑了所有的随机特性。
PRBS有很多类型,例如PRBS 7、11、13……31。这些不同类型具有不同的长度:PRBS 7的长度为27-1=127位,PRBS 31的长度为231-1 位(约2Gb)。要产生PRBS 31这样多的封包,是一件很困难的事情。因为存储器有限,不管是TX端还是RX端,要产生2Gb的数据都不简单。泰克最新推出的BERTScope误码率 分析仪BSA286C(见图)虽然具有大容量的128Mb存储器,但是还是没有办法直接产生2Gb的码型。这样,BSA286C便在内部采用逻辑门去产生 PRBS的线路。
图:泰克BERTScope误码率分析仪BSA286C。
能够接收这么长的码型也是一个挑战。ISI与材料、距离、总线速度和码型有关。码型越复杂,ISI的效率就越强。对于设计人员来说,测试码型由PRBS 9或PRBS 16变成PRBS 31不只是翻倍,这是一个非常严格的挑战。
另外,时序裕量在减少——数据速率1Gbps时,眼宽为1ns;速率变成25Gbps时,只剩40ps。对于RX端测试,可以容忍±5%的误差率(高速通 信必须考虑RX端测试)。速率为25Gbps时,可容忍的固有抖动为4ps,以RZR延时算法除以14,可容忍的抖动只有300fs。这样小的抖动容限目 前只有BERTScope可以做到。
100Gbps通信会涉及到光的部分。系统端采用铜线通信,线端则采用光纤通信。光纤较铜线损耗小。光纤的距离通常很长,因此对底噪的要求(低噪、低抖 动)很高(铜线对底噪要求却相反,需要在信号中加入抖动)。泰克不只提供了BERT,同时还推出了新的光模块。它的底噪可以做到100fs。从TX端来 看,主要的挑战是在带宽的部分(28Gbps的三次谐波为42GHz),因此做到50GHz。
在光的测试上,一个很重要的指标是动态范围。对于光的应用,需要做到50dBm(即10-5mW)的动态范围。这是一个非常小的能量。采用高带宽的实时示波器测量成本会很高,高垂直分辨率也难以达到。另外,底噪如果不能保证,高分辨率也没有意义。从成本、底噪和垂直分辨率来讲,这些都是示波器很难达到的。
不管是BERTScope还是新的光模块,都可以达到要求。对于高速串行通信测试,BERTScope的BERT很重要;要做抖动分析,则一定要有示波 器。BERTScope的固有抖动可以做到350fs的Rj。光和电需要同时测量。另外还有CRU(时钟恢复单元)。高速通信虽然采用并行拓扑,但却仍是 串行总线。区别并行和串行最简单的方法就是看它是否具有时钟,有则是并行,无则是串行。测量高速串行数据的眼图和抖动,必须要知道一个UI的长度,即它的 时钟。BERTScope可以对串行数据进行时钟恢复。另外,BERTScope拥有28.6Gbps的数据速率和较低的固有抖动,相当于一个带有示波器 功能的误码率分析仪,适合于对高速光电器件进行误码定位和抖动分析。
最后,他指出,100Gbps对于传统的光传输是一个很大的挑战。城市间的远距离光纤铺设投入了大量成本。光通信的一个主要器件是EDFA(掺饵光纤放大 器),用于克服长距离衰减而做信号放大。那么,如何能够在原有的基础设施下提高吞吐量?那就是用相干光的方式,即在同一个数据包内多放一些数据。泰克也可 以提供传统的光、电、TX端、RX端和新的相干光的应用。
文章评论(0条评论)
登录后参与讨论