图 2 显示了连接成单端运算放大器的 LTC6406。仅有一个输出被反馈回去,而且仅有一个输入接收反馈。其他输入现在是高阻抗的。
图 2:反馈仅是单端的。这个电路是稳定的,具有一个常规运放那样的高阻抗输入。闭环输出 (在这种情况下是 VOUT+ ) 是低噪声的。从闭环输出端能很好地得到单端输出,从而提供了 1.2GHz 的 3dB 带宽。开环输出 (VOUT–) 相对于 VOCM 具有 2 倍的噪声增益,但是直到约 300MHz 都表现良好,高于这个频率以后,会有明显的通带纹波。
LTC6406 在这个电路中工作得很好,而且仍然能提供一个差分输出。然而,一个简单的试验揭示出了这种配置的缺点之一。设想所有的输入和输出都为 1.2V,包括 VOCM。现在再设想,驱动 VOCM 引脚,使其额外增高 0.1V。可能有变化的惟一输出是 VOUT?–,因为 VOUT?+ 必须保持等于 VIN,因此为了将共模输出升高 100mV,放大器不得不将 VOUT?– 输出总共提高 200mV。这就是由 100mV VOCM 漂移引起的 200mV 差分输出漂移。这说明了以下事实:全差分放大器的单端反馈从 VOCM 引脚到“开路”输出引入了 2 倍的噪声增益。为了避免这种噪声,只是不使用这个输出就可以了,从而产生一个彻底的单端应用。或者,可以接受轻微的噪声处罚,并使用两个输出。
文章评论(0条评论)
登录后参与讨论