原创
采用24V供电系统的MCU电源电路及BOM表
24V直流供电系统在工业和农业领域非常普遍,但许多电子设备使用的MCU器件只能采用3.3V或是5V的小电流供应。这里可供选择的供电方法不少,例如采用78xx三端稳压器和LDO等,这两种方法简单却效率不高,前者甚至需要散热片。为了获得较高的电压转换效率,通常会使用开关型降压转换器。
24V输入的3.3V输出电路在MCU供电应用中,负载电流很小,转换器的开关损耗在总的转换损耗中要比开关的导通损耗扮演更重要的角色,可它又是必然的存在,降低开关工作频率成为主要的选择。但由于要以突发模式工作的缘故,由此导致的较高输出电压纹波是必然的结果。
RT6200GE是一款低电流、非同步Buck架构降压转换器,支持输入电压范围从4.5V至36V,最大输出电流至0.6A,其工作频率为1.2MHz,使用SOT-23-6的小型封装。在轻负载操作时,RT6200GE工作在电流不连续模式,其上桥MOSFET将根据需要偶尔跳过一些脉冲以保证输出电压处于稳定状态。
本设计是一个在24V输入电压下获得稳定的3.3V输出电压的完整电路。RT6200GE转换器采用内部补偿电路,带宽可以通过调整反馈电路的电阻R1来进行调整。在使用10μF输出电容的情况下,针对典型应用的补偿电路增益(400kΩ/R1)通常被设定为12dB,由此导致的带宽约为70kHz。当使用较小的输出电容时,转换器带宽将会增加。为了保持最大的相位裕量,R1的值就应该增大。为了让设计不至于对噪声太敏感,转换器的带宽不得不被轻微下调至55kHz,而其相位裕量为58°。
在MCU供电应用中,负载电流很小,转换器的开关损耗在总的转换损耗中要比开关的导通损耗扮演更重要的角色,可它又是必然的存在,降低开关工作频率成为主要的选择。但由于要以突发模式工作的缘故,由此导致的较高输出电压纹波是必然的结果。
电路原理图
上电时,将一个24V电源(4.5V < VIN < 36V)施加在VIN and GND之间,EN 端已经通过内部电路上拉到逻辑高电平使能操作。可驱动EN为高电平(>2.5V)以启动运作,或者驱动为低电平(<0.4V)以关闭运行。电路中的JP2为三脚插头,EN引脚用作使能。输出电压VOUT可通过设置R1、R2来实现:
Vout = 0.8 × ( 1 + R1/R2 )
芯齐齐BOM分析本设计元件参数是按照输出电流能力为0.5A所做的选择,在此条件下,转换器工作在1.2MHz的电流连续模式下。
芯齐齐BOM分析工具显示,此设计中的电感选用15μH/2.7A/±20%, DCR=50mΩ,尺寸大小是8mm x 8mm x 4mm,以减小输出纹波。输出电容对输出纹波的表现有决定性的影响,电路中的VOUT电容器(C4)选择22μF, 16V X5R陶瓷电容。
应用布线时,所有功率元件被放置在左上角,RT6200GE下面还有几个过孔将大电流引导至地线层。反馈引脚对噪声比较敏感,所以R1/R2被放置在靠近IC引脚的地方,为的是远离噪声信号。这个布局占用的面积是9mm x 9mm。
作者: 硬之城Allchips, 来源:面包板社区
链接: https://mbb.eet-china.com/blog/uid-me-3975615.html
版权声明:本文为博主原创,未经本人允许,禁止转载!
文章评论(0条评论)
登录后参与讨论