原创 氮化镓的晶体学湿式化学蚀刻法

2023-10-7 15:57 688 10 10 分类: EDA/ IP/ 设计与制造


引言

目前,大多数III族氮化物的加工都是通过干法等离子体蚀刻完成的。干法蚀刻有几个缺点,包括产生离子诱导损伤和难以获得激光器所需的光滑蚀刻侧壁。干法蚀刻产生的侧壁典型均方根(rms)粗糙度约为50纳米虽然已经发现KOH基溶液可以蚀刻AlN和InAlN,但是之前还没有发现能够蚀刻高质量GaN的酸或碱溶液。在本文中英思特通过使用乙二醇而不是水作为KOH和NaOH的溶剂,开发一种将晶体表面蚀刻为III族氮化物的两步法。

实验与讨论

我们通过在160℃以上的H3PO4、180℃以上的熔融KOH、以及135℃以上溶解在乙二醇中的KOH中进行蚀刻,形成了具有对应于各种GaN晶面的刻面的蚀坑。从各种不同的角度观察到所有的六边形蚀刻坑共用一个共同的基底,即^11方向,但是与c平面相交。这是因为这些面实际上是由两个或多个竞争的蚀刻平面产生的(如图1所示)。在H3PO4中,蚀坑密度约为2×106cm-2,在含氢氧化物的蚀刻剂中,蚀坑密度约为6×107cm-2

图1:GaN的c平面中位错蚀坑的高分辨率场效应SEM图像

晶体蚀刻工艺中的两个蚀刻步骤中的第一个用于建立蚀刻深度,并且它可以通过几种常见的处理方法来执行。对于我们的第一步,我们使用了几种不同的处理方法,包括在氯基等离子体中的反应离子蚀刻,在KOH溶液中的PEC蚀刻。第二步是通过浸入能够晶体蚀刻GaN的化学物质中来完成的。该蚀刻步骤可以产生光滑的结晶表面,并且可以通过改变第一步骤的方向、化学试剂和温度来选择特定的蚀刻平面。

图2所示的蚀刻速率是垂直于生长方向测量的,即在“水平”c平面上。对于“垂直”平面,如{10-10}平面,该平面的实际蚀刻速率等于测得的蚀刻速率。然而,对于非垂直平面,该平面的蚀刻速率实际上小于测量的蚀刻速率。

图2:KOH和溶解在乙二醇中的30% KOH中GaN蚀刻速率

有趣的是,在相同的温度下,溶解在乙二醇中的KOH的蚀刻速率高于摩尔数为10的KOH的蚀刻速率。事实上作为浓度函数的蚀刻速率在乙二醇中KOH的值处达到峰值。我们相信这是由于蚀刻产物在乙二醇中的高溶解度导致的。

结论

由于本研究中使用的所有化学物质都不能透过c平面,所以晶体蚀刻步骤不需要蚀刻掩模,c平面本身就可以充当掩模。然而,如果使用长蚀刻时间,蚀刻掩模可能是必要的,以防止在缺陷位置出现蚀刻坑。因此,我们已经成功地使用了在900℃退火30秒后的钛掩模

英思特提出了一种强有力的各向异性湿法化学蚀刻技术。因为蚀刻本质上是结晶学的,实验发现这种蚀刻对于高反射率激光器腔面是有用的底切能力对于降低双极晶体管等应用中的电容也很重要。

江苏英思特半导体科技有限公司主要从事湿法制程设备,晶圆清洁设备,RCA清洗机,KOH腐殖清洗机等设备的设计、生产和维护,联系人吴经理,联系电话18014374656(微信同号)

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
10
关闭 站长推荐上一条 /3 下一条