原创 正确选择和使用逻辑分析仪

2008-5-5 18:28 2366 6 6 分类: 测试测量


正确选择和使用逻辑分析仪


一、逻辑分析仪的发展


  自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。


  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。


  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。


  今天的发展趋势


  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。


  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。


  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。


  二、逻辑分析仪的选择


  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。


  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:


  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;


  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;


  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;


  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。


  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。


  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:


  1、普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。


  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。


  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。


  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。


  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。


  逻辑分析仪的一些技术指标:


  1、逻辑分析仪的通道数:在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340 通道以上。例Tektronix等。


  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。


  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。


20080104143219402.jpg


表一:典型的数字设备


  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统最快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。


  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。


  5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头最具代表性,属于逻辑分析仪的高档探头。


  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的 HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。


  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。


  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。


 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引出,特别是BGA封装,确实有困难,并且分立器件的尺寸也越来越小,典型的已达到 0.5mm×0.8mm。


  d) 与现有电路板上的调试部分的兼容性。


  6、系统的开放性:随着数据共享的呼声越来越高,我们所使用的系统的开放性就越来越重要,现在的逻辑分析仪的操作系统也由过去的专用系统发展到使用Windows介面,这样我们在使用时很方便。


  小结


  如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。


  从另一方面说,如果需要用最快速度的和最大型的分析能力很强的逻辑分析仪,已有现成的解决方案。这种新颖仪器几乎不会出现通道对通道的延时以及探头的负载影响。如果你稍有疏漏,则可能要花费几万美元的学费才能取得经验。


  确实能捕获到信号才是第一重要的事。当你知道正在捕获的 数据是有用的数据时就靠逻辑分析仪能力的发挥了。




本文地址

http://www.linuxdriver.cn/html/20083/648.htm 复制

逻辑分析仪的使用
添加时间: 2007-5-8  版权声明:本资料属于北京海洋兴业科技有限公司所有,如需转载,请注明出处!
    摘要:本文主要介绍逻辑分析仪的使用步骤与方法,从探头与被测系统连接、设置时钟模式和触发功能、捕获、分析、显示波形数据等几个方面介绍,重点介绍设置逻辑分析仪的时钟模式和触发条件,为初步使用逻辑分析仪的读者打下基础。
 
    关键词:逻辑探头、异步定时捕获、同步状态捕获、触发方式
 
    一、何时需要使用逻辑分析仪     逻辑分析仪是数字设计验证与调试过程中公认最出色的工具,它能够检验数字电路是否正常工作,并帮助用户查找并排除故障。它每次可捕获并显示多个信号,分析这些信号的时间关系和逻辑关系;对于调试难以捕获的、间断性故障,某些逻辑分析仪可以检测低频瞬态干扰,以及是否违反建立、保持时间。在软硬件系统集成中,逻辑分析仪可以跟踪嵌入软件的执行情况,并分析程序执行的效率,便于系统最后的优化。另外,某些逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。     当您需要完成下列工作时,请使用逻辑分析仪:     ·调试并检验数字系统的运行;     ·同时跟踪并使多个数字信号相关联;     ·检验并分析总线中违反时限的操作以及瞬变状态;     ·跟踪嵌入软件的执行情况。    


二、逻辑分析仪的使用步骤    


使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤:     ①用逻辑探头与被测系统(DUT)相连;     ②设置时钟模式和触发条件;     ③捕获被测信号;     ④分析与显示捕获的数据。     以下,我们逐步介绍逻辑分析仪使用的每个步骤:    


三、 逻辑探头     在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或 0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。     逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。    


四、设置时钟模式和触发条件     在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。  


  1、异步捕获模式     在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。    


2、同步捕获模式     同步捕获模式是用一个源自被测系统的信号做采样时钟信号,这种模式中用于为捕获确定时间的信号,可以是系统时钟、总线控制信号或一个引发被测系统改变状态的信号。逻辑分析仪在外部时钟信号的边缘采样,采到的数据代表逻辑信号稳定时被测电路所处的状态。对于引入的时钟信号是有限制的,一般要小于某一固定频率,这一频率被称为逻辑分析仪的最大状态速率,有的厂家称之为逻辑分析仪的带宽。在这种模式下,不考虑两个时钟事件之间的状态。    


3、设置触发方式     触发方式的区别是逻辑分析仪与示波器的另一项重要区别。示波器同样配有触发器,但对于多通道的二进制信号而言,示波器的触发功能受限。相反,逻辑分析仪中可以对各种逻辑条件进行触发。触发的目的在于为逻辑分析仪设定什么时候开始捕获数据、捕获哪些数据,使逻辑分析仪跟踪被测电路的逻辑状态,并在被测系统中用户定义的事件处触发。     不同厂家的逻辑分析仪有着各种的不同的触发条件的设定,可以分为两大类:对单一通道的触发条件的设定;通道间触发条件的设计。单一通道的触发类似于示波器的触发。例如,高/低电平触发,上升沿/下降沿触发,脉冲宽度触发器等触发方式;而通道间的逻辑触发对于逻辑分析仪而言更为重要,因为逻辑分析仪主要用来观察通道间的逻辑关系以及逻辑状态。通道间的逻辑触发也可分为两大类:一类为单纯为每一通道设置触发条件,例如,当1、2通道为高电平,3、4通道为低电平,5通道为上升沿时触发;另一类称为码型触发或事件触发,例如,8根信号线可以看成8bit的码型(事件),这8bit可以用十六进制或二进制表示,设置值为0A(十六进制)时触发,即为码型触发。     另外,有些厂家有更高级的按阶层触发,普通的码型触发即可以看作一阶触发,另外还有二阶、三阶、或阶触发,这些触发对于数字电路中包头、包尾的识别非常有用。我们北京海洋兴业科技有限公司最新推出的OLA2032B逻辑分析仪具有以上介绍的全部触发方式。    


五、捕获测试数据     逻辑分析仪探头、触发器和时钟系统均用于为实时捕获存储器传递数据。该存储器是测量仪的中心——不仅是来自被测系统的所有采样数据的最终目的地,也是测量仪进行分析和显示的数据源。     选择逻辑分析仪时,通道数和存储深度是非常重要的指标,为了决定逻辑分析仪的通道数和存储深度,首先确定要对多少信号进行捕获与分析?逻辑分析仪的通道数应与需捕获的信号数相对应。数字系统总线具有各自不同的宽度,通道数一般为总线宽度的3-4倍(数据线+地址线+控制线+时钟)。例如,对一个8位的数字系统进行测试,32通道的逻辑分析仪比较合适,要确保考虑到需同时捕获的所有信号的总线。其次,确定捕获操作将持续多长时间?这一步决定逻辑分析仪的存储深度,例如,采样间隔为1ns时,存储1s,存储深度为1M。存储深度越长,发现错误的几率越大。  


  六、分析与显示捕获的数据     存储于实时捕获存储器中的数据可用于各种显示和分析模式。一旦数据在系统中存储,它就能够以各种不同的格式查看,如时间波形,与二进制代码等。对于大多数的测试需要,用户都比较习惯于使用总线形式显示捕获的数据,而且,一般的逻辑分析仪可以同时观察几组并行总线,并观察他们之间的数据关系,了解逻辑代码的真正用意。在使用逻辑分析仪观察并行总线时,一般都会先观察同步状态数据,如果状态数据存在问题,在观察异步时钟数据,寻找问题所在。另外,有些逻辑分析仪,例如OLA2032B还有类似于某些示波器的波形搜索功能,更加方便于对已捕获的数据的分析。     综上,介绍了逻辑分析仪的使用步骤与方法,但大部分逻辑分析仪的操作对于刚刚接触逻辑分析仪的用户都显得有些复杂,我们北京海洋兴业科技有限公司为您提供了灵活的解决方案。其一是OLA2032B独立台式逻辑分析仪可以完全不需要设置,只要按下Auto-Scan,便可以检测到接入的被测信号,并在屏幕上显示出被测信号,或者按下Auto-Store,便可以记录下您需要观察的信号数据,到整个存储空间存满为止。其二是泰克新近推出的MSO4000系列混合信号示波器,可以像使用示波器一样使用逻辑分析仪。两种方案都非常简便易用,前者可以测试32路信号,后者16个通道。以上两种方案可以保证让您放心的使用逻辑分析仪,没有后顾之忧。


参考文献


泰克《逻辑分析仪XYZ》.
仪器论坛《正确选择和使用逻辑分析仪》. www.17bbs.orQ.
今日电子.《使用混合信号示波器调试混合信号嵌入式设计》. 07年4月.
——北京海洋兴业科技有限公司 王乐 供稿 


逻辑分析仪的使用
添加时间: 2007-5-8  版权声明:本资料属于北京海洋兴业科技有限公司所有,如需转载,请注明出处!
    摘要:本文主要介绍逻辑分析仪的使用步骤与方法,从探头与被测系统连接、设置时钟模式和触发功能、捕获、分析、显示波形数据等几个方面介绍,重点介绍设置逻辑分析仪的时钟模式和触发条件,为初步使用逻辑分析仪的读者打下基础。
 
    关键词:逻辑探头、异步定时捕获、同步状态捕获、触发方式
 
    一、何时需要使用逻辑分析仪     逻辑分析仪是数字设计验证与调试过程中公认最出色的工具,它能够检验数字电路是否正常工作,并帮助用户查找并排除故障。它每次可捕获并显示多个信号,分析这些信号的时间关系和逻辑关系;对于调试难以捕获的、间断性故障,某些逻辑分析仪可以检测低频瞬态干扰,以及是否违反建立、保持时间。在软硬件系统集成中,逻辑分析仪可以跟踪嵌入软件的执行情况,并分析程序执行的效率,便于系统最后的优化。另外,某些逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。     当您需要完成下列工作时,请使用逻辑分析仪:     ·调试并检验数字系统的运行;     ·同时跟踪并使多个数字信号相关联;     ·检验并分析总线中违反时限的操作以及瞬变状态;     ·跟踪嵌入软件的执行情况。    


二、逻辑分析仪的使用步骤    


使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤:     ①用逻辑探头与被测系统(DUT)相连;     ②设置时钟模式和触发条件;     ③捕获被测信号;     ④分析与显示捕获的数据。     以下,我们逐步介绍逻辑分析仪使用的每个步骤:    


三、 逻辑探头     在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或 0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。     逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。    


四、设置时钟模式和触发条件     在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。  


  1、异步捕获模式     在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。    


2、同步捕获模式     同步捕获模式是用一个源自被测系统的信号做采样时钟信号,这种模式中用于为捕获确定时间的信号,可以是系统时钟、总线控制信号或一个引发被测系统改变状态的信号。逻辑分析仪在外部时钟信号的边缘采样,采到的数据代表逻辑信号稳定时被测电路所处的状态。对于引入的时钟信号是有限制的,一般要小于某一固定频率,这一频率被称为逻辑分析仪的最大状态速率,有的厂家称之为逻辑分析仪的带宽。在这种模式下,不考虑两个时钟事件之间的状态。    


3、设置触发方式     触发方式的区别是逻辑分析仪与示波器的另一项重要区别。示波器同样配有触发器,但对于多通道的二进制信号而言,示波器的触发功能受限。相反,逻辑分析仪中可以对各种逻辑条件进行触发。触发的目的在于为逻辑分析仪设定什么时候开始捕获数据、捕获哪些数据,使逻辑分析仪跟踪被测电路的逻辑状态,并在被测系统中用户定义的事件处触发。     不同厂家的逻辑分析仪有着各种的不同的触发条件的设定,可以分为两大类:对单一通道的触发条件的设定;通道间触发条件的设计。单一通道的触发类似于示波器的触发。例如,高/低电平触发,上升沿/下降沿触发,脉冲宽度触发器等触发方式;而通道间的逻辑触发对于逻辑分析仪而言更为重要,因为逻辑分析仪主要用来观察通道间的逻辑关系以及逻辑状态。通道间的逻辑触发也可分为两大类:一类为单纯为每一通道设置触发条件,例如,当1、2通道为高电平,3、4通道为低电平,5通道为上升沿时触发;另一类称为码型触发或事件触发,例如,8根信号线可以看成8bit的码型(事件),这8bit可以用十六进制或二进制表示,设置值为0A(十六进制)时触发,即为码型触发。     另外,有些厂家有更高级的按阶层触发,普通的码型触发即可以看作一阶触发,另外还有二阶、三阶、或阶触发,这些触发对于数字电路中包头、包尾的识别非常有用。我们北京海洋兴业科技有限公司最新推出的OLA2032B逻辑分析仪具有以上介绍的全部触发方式。    


五、捕获测试数据     逻辑分析仪探头、触发器和时钟系统均用于为实时捕获存储器传递数据。该存储器是测量仪的中心——不仅是来自被测系统的所有采样数据的最终目的地,也是测量仪进行分析和显示的数据源。     选择逻辑分析仪时,通道数和存储深度是非常重要的指标,为了决定逻辑分析仪的通道数和存储深度,首先确定要对多少信号进行捕获与分析?逻辑分析仪的通道数应与需捕获的信号数相对应。数字系统总线具有各自不同的宽度,通道数一般为总线宽度的3-4倍(数据线+地址线+控制线+时钟)。例如,对一个8位的数字系统进行测试,32通道的逻辑分析仪比较合适,要确保考虑到需同时捕获的所有信号的总线。其次,确定捕获操作将持续多长时间?这一步决定逻辑分析仪的存储深度,例如,采样间隔为1ns时,存储1s,存储深度为1M。存储深度越长,发现错误的几率越大。  


  六、分析与显示捕获的数据     存储于实时捕获存储器中的数据可用于各种显示和分析模式。一旦数据在系统中存储,它就能够以各种不同的格式查看,如时间波形,与二进制代码等。对于大多数的测试需要,用户都比较习惯于使用总线形式显示捕获的数据,而且,一般的逻辑分析仪可以同时观察几组并行总线,并观察他们之间的数据关系,了解逻辑代码的真正用意。在使用逻辑分析仪观察并行总线时,一般都会先观察同步状态数据,如果状态数据存在问题,在观察异步时钟数据,寻找问题所在。另外,有些逻辑分析仪,例如OLA2032B还有类似于某些示波器的波形搜索功能,更加方便于对已捕获的数据的分析。     综上,介绍了逻辑分析仪的使用步骤与方法,但大部分逻辑分析仪的操作对于刚刚接触逻辑分析仪的用户都显得有些复杂,我们北京海洋兴业科技有限公司为您提供了灵活的解决方案。其一是OLA2032B独立台式逻辑分析仪可以完全不需要设置,只要按下Auto-Scan,便可以检测到接入的被测信号,并在屏幕上显示出被测信号,或者按下Auto-Store,便可以记录下您需要观察的信号数据,到整个存储空间存满为止。其二是泰克新近推出的MSO4000系列混合信号示波器,可以像使用示波器一样使用逻辑分析仪。两种方案都非常简便易用,前者可以测试32路信号,后者16个通道。以上两种方案可以保证让您放心的使用逻辑分析仪,没有后顾之忧。


参考文献


泰克《逻辑分析仪XYZ》.
仪器论坛《正确选择和使用逻辑分析仪》. www.17bbs.orQ.
今日电子.《使用混合信号示波器调试混合信号嵌入式设计》. 07年4月.
——北京海洋兴业科技有限公司 王乐 供稿 

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
6
关闭 站长推荐上一条 /3 下一条