原创 STM32笔记(四)DMA、USART的演示

2008-12-15 19:16 8643 10 17 分类: MCU/ 嵌入式
  这里有个小小的例子,来演示DMA模块与系统程序并行工作。
  用串口以低波特率发送一个10K的数据,花费近10s时间,此时按照以往方法,CPU要不断等待数据发送、送数据;或者送数据、进中断、送数据,处理起来比较消耗时间。
  使用了DMA功能以后,用户程序中只需配置好DMA,开启传输后,再也不需要操心,10K数据完成后会有标志位或中断产生,期间可以做任何想做的事,非常方便。
  这个是相应的代码例子,基于STM32F103VBT6


/******************************************************************************
* 本文件实现串口发送功能(通过重构putchar函数,调用printf;或者USART_SendData()
* 这里是一个用串口实现大量数据传输的例子,使用了DMA模块进行内存到USART的传输
* 每当USART的发送缓冲区空时,USART模块产生一个DMA事件,
* 此时DMA模块响应该事件,自动从预先定义好的发送缓冲区中拿出下一个字节送给USART
* 整个过程无需用户程序干预,用户只需启动DMA传输传输即可
* 在仿真器调试时,可以在数据传输过程中暂停运行,此时DMA模块并没有停止
* 串口依然发送,表明DMA传输是一个独立的过程。
* 同时开启接收中断,在串口中断中将数据存入缓冲区,在main主循环中处理
* 作者:jjldc(九九)
* 代码硬件基于万利199元的EK-STM32F开发板,CPU=STM32F103VBT6
*******************************************************************************/

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_lib.h"
#include "stdio.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define USART1_DR_Base  0x40013804

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
#define SENDBUFF_SIZE   10240
vu8 SendBuff[SENDBUFF_SIZE];
vu8 RecvBuff[10];
vu8 recv_ptr;

/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void DMA_Configuration(void);
void USART1_Configuration(void);

int fputc(int ch, FILE *f);
void Delay(void);

/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name  : main
* Description    : Main program.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
    u16 i;
#ifdef DEBUG
    debug();
#endif
    recv_ptr = 0;
   
    RCC_Configuration();
    GPIO_Configuration();
    NVIC_Configuration();
    DMA_Configuration();
    USART1_Configuration();
   
    printf("\r\nSystem Start...\r\n");
    printf("Initialling SendBuff... \r\n");
    for(i=0;i<SENDBUFF_SIZE;i++)
    {
        SendBuff = i&0xff;
    }
    printf("Initial success!\r\nWaiting for transmission...\r\n");
    //发送去数据已经准备好,按下按键即开始传输
    while(GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_3));
   
    printf("Start DMA transmission!\r\n");
   
    //这里是开始DMA传输前的一些准备工作,将USART1模块设置成DMA方式工作
    USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
    //开始一次DMA传输!
    DMA_Cmd(DMA1_Channel4, ENABLE);
   
    //等待DMA传输完成,此时我们来做另外一些事,点灯
    //实际应用中,传输数据期间,可以执行另外的任务
    while(DMA_GetFlagStatus(DMA1_FLAG_TC4) == RESET)
    {
        LED_1_REV;      //LED翻转
        Delay();        //浪费时间
    }
    //DMA传输结束后,自动关闭了DMA通道,而无需手动关闭
    //下面的语句被注释
    //DMA_Cmd(DMA1_Channel4, DISABLE);
   
    printf("\r\nDMA transmission successful!\r\n");

   
    /* Infinite loop */
    while (1)
    {
    }
}

/*******************************************************************************
* Function Name  : 重定义系统putchar函数int fputc(int ch, FILE *f)
* Description    : 串口发一个字节
* Input          : int ch, FILE *f
* Output         :
* Return         : int ch
* 这个是使用printf的关键
*******************************************************************************/
int fputc(int ch, FILE *f)
{
    //USART_SendData(USART1, (u8) ch);
    USART1->DR = (u8) ch;
   
    /* Loop until the end of transmission */
    while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)
    {
    }

    return ch;
}

/*******************************************************************************
* Function Name  : Delay
* Description    : 延时函数
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void Delay(void)
{
    u32 i;
    for(i=0;i<0xF0000;i++);
    return;
}

/*******************************************************************************
* Function Name  : RCC_Configuration
* Description    : 系统时钟设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void RCC_Configuration(void)
{
    ErrorStatus HSEStartUpStatus;

    //使能外部晶振
    RCC_HSEConfig(RCC_HSE_ON);
    //等待外部晶振稳定
    HSEStartUpStatus = RCC_WaitForHSEStartUp();
    //如果外部晶振启动成功,则进行下一步操作
    if(HSEStartUpStatus==SUCCESS)
    {
        //设置HCLK(AHB时钟)=SYSCLK
        RCC_HCLKConfig(RCC_SYSCLK_Div1);

        //PCLK1(APB1) = HCLK/2
        RCC_PCLK1Config(RCC_HCLK_Div2);

        //PCLK2(APB2) = HCLK
        RCC_PCLK2Config(RCC_HCLK_Div1);

        //FLASH时序控制
        //推荐值:SYSCLK = 0~24MHz   Latency=0
        //        SYSCLK = 24~48MHz  Latency=1
        //        SYSCLK = 48~72MHz  Latency=2
        FLASH_SetLatency(FLASH_Latency_2);
        //开启FLASH预取指功能
        FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

        //PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHz
        RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
        //启动PLL
        RCC_PLLCmd(ENABLE);
        //等待PLL稳定
        while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
        //系统时钟SYSCLK来自PLL输出
        RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
        //切换时钟后等待系统时钟稳定
        while(RCC_GetSYSCLKSource()!=0x08);


        /*
        //设置系统SYSCLK时钟为HSE输入
        RCC_SYSCLKConfig(RCC_SYSCLKSource_HSE);
        //等待时钟切换成功
        while(RCC_GetSYSCLKSource() != 0x04);
        */
    }

    //下面是给各模块开启时钟
    //启动GPIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \
                           RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\
                           ENABLE);
    //启动AFIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
    //启动USART1
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
    //启动DMA时钟
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
   
}



/*******************************************************************************
* Function Name  : GPIO_Configuration
* Description    : GPIO设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void GPIO_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;

    //PC口4567脚设置GPIO输出,推挽 2M
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOC, &GPIO_InitStructure);

    //KEY2 KEY3 JOYKEY
    //位于PD口的3 4 11-15脚,使能设置为输入
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_11 | GPIO_Pin_12 |\
        GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOD, &GPIO_InitStructure);

    //USART1_TX
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
   
    //USART1_RX
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

}



/*******************************************************************************
* Function Name  : NVIC_Configuration
* Description    : NVIC设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void NVIC_Configuration(void)
{
    NVIC_InitTypeDef NVIC_InitStructure;

#ifdef  VECT_TAB_RAM
    // Set the Vector Table base location at 0x20000000
    NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else  /* VECT_TAB_FLASH  */
    // Set the Vector Table base location at 0x08000000
    NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif

    //设置NVIC优先级分组为Group2:0-3抢占式优先级,0-3的响应式优先级
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
    //串口接收中断打开   
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQChannel;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);
}


/*******************************************************************************
* Function Name  : USART1_Configuration
* Description    : NUSART1设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void USART1_Configuration(void)
{
    USART_InitTypeDef USART_InitStructure;
   
    USART_InitStructure.USART_BaudRate = 9600;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;
    USART_InitStructure.USART_Parity = USART_Parity_No;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
    USART_Init(USART1, &USART_InitStructure);
   
    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
   
    USART_Cmd(USART1, ENABLE);
}


void DMA_Configuration(void)
{
    DMA_InitTypeDef DMA_InitStructure;
    //DMA设置:
    //设置DMA源:内存地址&串口数据寄存器地址
    //方向:内存-->外设
    //每次传输位:8bit
    //传输大小DMA_BufferSize=SENDBUFF_SIZE
    //地址自增模式:外设地址不增,内存地址自增1
    //DMA模式:一次传输,非循环
    //优先级:中
    DMA_DeInit(DMA1_Channel4);
    DMA_InitStructure.DMA_PeripheralBaseAddr = USART1_DR_Base;
    DMA_InitStructure.DMA_MemoryBaseAddr = (u32)SendBuff;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
    DMA_InitStructure.DMA_BufferSize = SENDBUFF_SIZE;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(DMA1_Channel4, &DMA_InitStructure);
}


打包的例子,是MDK下的工程,可供参考:)rar
大家喜欢的话,就点我标题旁边的顶咯


文章评论7条评论)

登录后参与讨论

用户1536350 2010-10-28 19:24

最后,我用3.10的库编译通过,并运行成功~! 只是不知道是不是通过DMA~!

用户1536350 2010-10-28 18:59

把LED_1_REV注释掉,编译通过后,烧录后,串口助手没反应~ ???

用户1536350 2010-10-28 18:35

编译出错~! LED_1_REV 没有定义~!

用户213184 2009-8-7 09:21

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);我想问一下IO复用,是不是这样写一下上面这个函数,那么所有的IO复用功能就都打开了?

用户213184 2009-8-3 14:19

还有一个问题,因为怕写太长了又像第一个不能显示。所以只能分两个写了。嗯,我的笔记本没有串口,而如果我想读串口的值应该怎么办?(不通过usb转串口)比如说设个变量什么的,然后我应该如何来查看这个变量,请帮忙详细解答一下!感激涕零!

用户213184 2009-8-3 14:16

好像内容不能写太多,唉,只能再重写一次了,我想问一下如果在main函数里的for语句里头多加一个printf("%d",sendBuff[i]);是否可以把sendBuff[]这个变量里头的值输出?请多多指教,谢谢!

用户213184 2009-8-3 14:09

你好,我想问一下你在main函数中如果把下面的 for(i=0;i
相关推荐阅读
用户699237 2009-06-04 14:36
发布TBDML Plus用户手册和驱动包
九九的TBDML Plus已经于2009年5月1日正式发售在EDN和21IC上发布TBDML Plus用户使用手册和用户驱动包欢迎各位用户下载使用TBDML Plus用户包下载:https://sta...
用户699237 2009-05-30 16:39
低价供应Freescale飞思卡尔 BDM仿真器 调试器 兼容8/16/32位单片机
本店最新产品的飞思卡尔三合一BDM仿真器TBDML Plus支持S12 S08 ColdFireV1三种内核的仿真调试USB接口 最新JB16+12MHz晶振硬件 仿真速度是原BDM的2倍!超小体积 ...
用户699237 2009-05-20 15:12
隆重发布高速模拟视频解码模块(智能车可用)
关于智能车摄像头的选择,CCD以其高感光度、能在运动时获取较为清晰的图像而成为智能车摄像头的首选,这是一个趋势。详情请搜索《CCD与CMOS摄像头在智能车竞赛中的选择》  同时摄像头的前瞻越来越大,很...
用户699237 2009-05-15 16:45
智能车竞赛中CCD与CMOS摄像头的选择
https://static.assets-stash.eet-china.com/album/old-resources/2009/5/15/3cb54ae1-ee52-4f05-9629-86c2...
用户699237 2009-05-12 21:03
智能车上位机:串口图像显示程序
这是我很久以前写的程序功能很不完善如果要使用 请先把串口调整到COM1 不能在设置窗口中设置串口号 否则会出错同时连拍功能没有实现 嘿嘿 不好意思哦具体如何发送 在readme中有详细解释没空改程序了...
用户699237 2009-05-12 21:02
OV7620 OV6620等CMOS摄像头图像采集的方法
本文由九九原创,发表于《电子技术应用》2008年第9期,版权归作者与出版社所有,转载请务必注明作者出处,谢谢http://shop35388432.taobao.com九九小铺,供应:MC9S12DG...
我要评论
7
10
关闭 站长推荐上一条 /2 下一条