原创 模拟开关的关键技术特性和应用实例分析

2008-3-30 20:54 3440 7 7 分类: 模拟

近年来,便携式产品越来越多地采用多源设计,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。


尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。


模拟开关的模拟特性


许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性:


1. 导通电阻(Ron)随输入信号(VIN)变化而变化


<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两个对偶的N沟道MOSFETP沟道MOSFET构成,可使信号双向传输,如果将不同VIN值所对应的P沟道MOSFETN沟道MOSFET的导通电阻并联,可得到图1b并联结构下Ron随输入电压(VIN)的变化关系,如果不考虑温度、电源电压的影响,RonVin呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,Ron也受电源电压的影响,通常随着电源电压的上升而减小。


fc6e58dd-abbd-426c-84d3-26641d28d889.JPG
1a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系


2. 模拟开关输入有严格的输入信号范围


由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。


3. 注入电荷


应用机械开关我们当然希望Ron越低越好,因为低阻可以降低信号的损耗。然而对于模拟开关而言,低Ron并非适用于所有的应用,较低的Ron需要占据较大的芯片面积,从而产生较大的输入电容,在每个开关周期其充电和放电过程会消耗更多的电流。时间常数t=RC,充电时间取决于负载电阻(R)和电容(C),一般持续几十纳秒。这说明低Ron具有更长的导通和关断时间。为此,选择模拟开关应该综合权衡Ron和注入电荷。


4. 开关断开时仍会有感应信号漏出


这一特性指的是当模拟开关传输交流信号时,在断开情况下,仍然会有一部分信号通过感应由输入端传到输出端,或者由一个通道传到另一个通道。通常信号的频率越高,信号泄漏的程度越严重。


5. 传输电流比较小


模拟开关不同于机械开关,它通常只能传输小电流,目前CMOS工艺的模拟开关允许连续传输的电流大多小于500mA


6. 逻辑控制端驱动电流极小


机械开关逻辑控制端的驱动电流往往都是毫安级,有时单纯靠数字I/O很难驱动。而模拟开关的逻辑控制端驱动电流极小,一般低于纳安级。因此,它完全可以由数字I/O直接驱动,从而达到降低功耗、简化电路的目的。


模拟开关的开关特性


既然称之为模拟开关,自然它还具有开关性,具体表现如下:


1. 信号可双向传输


有些人习惯于把模拟开关的两个常开常闭端称之为输入端,公共端称之为输出端,其实这只是根据模拟开关的具体应用给予的临时定义。模拟开关大多可以使信号双向传输,如果忽略这一点,就很容易使电路生成问题,比如将电压反向偏置、电流倒灌等。


2. 开关断开后漏电流极小


模拟开关在断开(OFF)时会呈现高阻状态,两传输端间的漏电流极小,一般只有纳安级以下,如SGM3001SGM3002SGM3005系列模拟开关,其断开后的漏电流均为1nA。这么微弱的电流在应用中可忽略不计,模拟开关此时可被认为是理想断开的。


总之,模拟开关是具有开关功能的半导体器件,在应用过程中既要充分利用它的开关功能,又要考虑它的半导体特性,否则可能会出现意想不到的麻烦。


模拟开关应用实例分析


2是一音响设备前端放大及信号选通部分电路,其中选用了SGM324(四通道运算放大器)SGM3002(双通道模拟开关)


点击开大图
2:音响前端放大及信号选通电路


该方案设计本意是当Input=0时,Line_outLLine_outR音频信号选通;当Input=1时,Phone_outLPhone_outR音频信号选通。然而当实验机做出后,设计者发现当Input=1时,Line_outLLine_outR通道有相当一部分信号分别漏到D1D2端。应用网络分析仪HP/Agilent 3589A测试SGM3002的关断隔离度,当输入信号为10kHz时,SGM3002的关断隔离度仅为-120dB,因此芯片应该没有问题。


事实上,该电路在模拟开关应用上存在下面两处错误:


1. 模拟开关的输入信号缺少一个直流偏置


2中模拟开关部分电路可以等效成图3,本文第一部分曾经提到模拟开关输入信号输入不能为负。


点击开大图
3:模拟开关等效电路


通常来讲,CMOS工艺的模拟开关输入信号最小只能到-0.3V,如果再低于这个值,芯片将不能正常工作,甚至会损坏。图2中模拟开关输入信号没有直流偏置,所以输入信号有一部分处于负值区,模拟开关自然无法正常工作。


解决办法:将电容C2C3均去掉,模拟开关输入信号便有了1/2VDC的直流偏置信号,此时模拟开关便可以轨到轨工作。此外,由于模拟开关公共端后面加了电容,所以直流信号依然可以被有效地隔离。


2. D1D2端缺少耦合电阻


当模拟开关在断开的情况下,其输入与输出端等效串联了一个电容C,如果再假设在模拟开关输出端到地之间有一个等效电阻R,则模拟开关在断开时的等效电路如图4所示。


9adc5b0e-b221-4ce5-bf35-cd2bf3df862a.JPG
4:模拟开关断开时的等效电路


此时的模拟开关其实等效为一个RC滤波电路,由此不难得出以下公式:



4f92b896-e06b-414d-88a9-9d6e42d2b8a1.JPG


其中,uout为模拟开关输出信号;uin为模拟开关输入信号;R为模拟开关输出端电阻负载;C为模拟开关断开时等效电容;f为输入信号频率。


由于模拟开关等效电容C会设计成很小,所以当输入信号f处于音频区时,增益ARf同时决定。当R取值较小时,f起主导作用,此时A<<1,信号被有效隔离。当R取值较大时,此时R起主导作用,此时A—>1,信号几乎被完全泄漏过来。所以当输出端悬空时,其输出端与地之间电阻R—>+∞,此时模拟开关完全导通。


修正以上两个错误后,该音频应用电路便可以正常工作了。由以上实例可以看出,充分理解模拟开关的基本概念是正确应用模拟开关的基础。

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
7
关闭 站长推荐上一条 /3 下一条