资料
  • 资料
  • 专题
用于心血管风险预测的半监督序列学习
推荐星级:
时间:2021-10-31
大小:1.13MB
阅读数:1068
上传用户:yhb__1213_815295659
查看他发布的资源
下载次数
1
所需E币
2
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
We train and validate a semi-supervised, multi-task LSTM
on 57,675 person-weeks of data from off-the-shelf wearable
heart rate sensors, showing high accuracy at detecting
multiple medical conditions, including diabetes (0.8451),
high cholesterol (0.7441), high blood pressure (0.8086), and
sleep apnea (0.8298).We compare two semi-supervised training
methods, semi-supervised sequence learning and heuristic
pretraining, and show they outperform hand-engineered
biomarkers from the medical literature. We believe our work
suggests a new approach to patient risk stratification based
on cardiovascular risk scores derived from popular wearables
such as Fitbit, Apple Watch, or Android Wear.
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书