原创 TCL命令之Binary

2013-5-28 13:52 2647 16 17 分类: 测试测量 文集: TCL/TK

名称:binary -
Insert and extract fields from binary strings

概要:binary format formatString ?arg arg ...?
          binary scan string formatString ?varName varName ...?

描述:This command provides facilities for manipulating binary data. The first form, binary format, creates a binary string from normal Tcl values. For example, given the values 16 and 22, on a 32-bit architecture, it might produce an 8-byte binary string consisting of two 4-byte integers, one for each of the numbers. The second form of the command, binary scan, does the opposite: it extracts data from a binary string and returns it as ordinary Tcl string values.

The binary format command generates a binary string whose layout is specified by the formatString and whose contents come from the additional arguments. The resulting binary value is returned.

The formatString consists of a sequence of zero or more field specifiers separated by zero or more spaces. Each field specifier is a single type character followed by an optional flag character followed by an optional numeric count. Most field specifiers consume one argument to obtain the value to be formatted. The type character specifies how the value is to be formatted. The count typically indicates how many items of the specified type are taken from the value. If present, the count is a non-negative decimal integer or *, which normally indicates that all of the items in the value are to be used. If the number of arguments does not match the number of fields in the format string that consume arguments, then an error is generated. The flag character is ignored for for binary format.

Here is a small example to clarify the relation between the field specifiers and the arguments:

binary format d3d {1.0 2.0 3.0 4.0} 0.1

The first argument is a list of four numbers, but because of the count of 3 for the associated field specifier, only the first three will be used. The second argument is associated with the second field specifier. The resulting binary string contains the four numbers 1.0, 2.0, 3.0 and 0.1.

Each type-count pair moves an imaginary cursor through the binary data, storing bytes at the current position and advancing the cursor to just after the last byte stored. The cursor is initially at position 0 at the beginning of the data. The type may be any one of the following characters:

a
Stores a byte string of length count in the output string. Every character is taken as modulo 256 (i.e. the low byte of every character is used, and the high byte discarded) so when storing character strings not wholly expressible using the characters \u0000-\u00ff, the encoding convertto command should be used first to change the string into an external representation if this truncation is not desired (i.e. if the characters are not part of the ISO 8859-1 character set.) If arg has fewer than count bytes, then additional zero bytes are used to pad out the field. If arg is longer than the specified length, the extra characters will be ignored. If count is *, then all of the bytes in arg will be formatted. If count is omitted, then one character will be formatted. For example,
binary format a7a*a alpha bravo charlie

will return a string equivalent to alpha\000\000bravoc,

binary format a* [encoding convertto utf-8 \u20ac]

will return a string equivalent to \342\202\254 (which is the UTF-8 byte sequence for a Euro-currency character) and

binary format a* [encoding convertto iso8859-15 \u20ac]

will return a string equivalent to \244 (which is the ISO 8859-15 byte sequence for a Euro-currency character). Contrast these last two with:

A
This form is the same as a except that spaces are used for padding instead of nulls. For example,
binary format A6A*A alpha bravo charlie

will return alpha bravoc.

b
Stores a string of count binary digits in low-to-high order within each byte in the output string. Arg must contain a sequence of 1 and 0 characters. The resulting bytes are emitted in first to last order with the bits being formatted in low-to-high order within each byte. If arg has fewer than count digits, then zeros will be used for the remaining bits. If arg has more than the specified number of digits, the extra digits will be ignored. If count is *, then all of the digits in arg will be formatted. If count is omitted, then one digit will be formatted. If the number of bits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For example,
binary format b5b* 11100 111000011010

will return a string equivalent to \x07\x87\x05.

B
This form is the same as b except that the bits are stored in high-to-low order within each byte. For example,
binary format B5B* 11100 111000011010

will return a string equivalent to \xe0\xe1\xa0.

H
Stores a string of count hexadecimal digits in high-to-low within each byte in the output string. Arg must contain a sequence of characters in the set "0123456789abcdefABCDEF". The resulting bytes are emitted in first to last order with the hex digits being formatted in high-to-low order within each byte. If arg has fewer than count digits, then zeros will be used for the remaining digits. If arg has more than the specified number of digits, the extra digits will be ignored. If count is *, then all of the digits in arg will be formatted. If count is omitted, then one digit will be formatted. If the number of digits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For example,
binary format H3H*H2 ab DEF 987

will return a string equivalent to \xab\x00\xde\xf0\x98.

h
This form is the same as H except that the digits are stored in low-to-high order within each byte. This is seldom required. For example,
binary format h3h*h2 AB def 987

will return a string equivalent to \xba\x00\xed\x0f\x89.

c
Stores one or more 8-bit integer values in the output string. If no count is specified, then arg must consist of an integer value. If count is specified, arg must consist of a list containing at least that many integers. The low-order 8 bits of each integer are stored as a one-byte value at the cursor position. If count is *, then all of the integers in the list are formatted. If the number of elements in the list is greater than count, then the extra elements are ignored. For example,
binary format c3cc* {3 -3 128 1} 260 {2 5}

will return a string equivalent to \x03\xfd\x80\x04\x02\x05, whereas

binary format c {2 5}

will generate an error.

s
This form is the same as c except that it stores one or more 16-bit integers in little-endian byte order in the output string. The low-order 16-bits of each integer are stored as a two-byte value at the cursor position with the least significant byte stored first. For example,
binary format s3 {3 -3 258 1}

will return a string equivalent to \x03\x00\xfd\xff\x02\x01.

S
This form is the same as s except that it stores one or more 16-bit integers in big-endian byte order in the output string. For example,
binary format S3 {3 -3 258 1}

will return a string equivalent to \x00\x03\xff\xfd\x01\x02.

t
This form (mnemonically tiny) is the same as s and S except that it stores the 16-bit integers in the output string in the native byte order of the machine where the Tcl script is running. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
i
This form is the same as c except that it stores one or more 32-bit integers in little-endian byte order in the output string. The low-order 32-bits of each integer are stored as a four-byte value at the cursor position with the least significant byte stored first. For example,
binary format i3 {3 -3 65536 1}

will return a string equivalent to \x03\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x01\x00

I
This form is the same as i except that it stores one or more one or more 32-bit integers in big-endian byte order in the output string. For example,
binary format I3 {3 -3 65536 1}

will return a string equivalent to \x00\x00\x00\x03\xff\xff\xff\xfd\x00\x01\x00\x00

n
This form (mnemonically number or normal) is the same as i and I except that it stores the 32-bit integers in the output string in the native byte order of the machine where the Tcl script is running. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
w
This form is the same as c except that it stores one or more 64-bit integers in little-endian byte order in the output string. The low-order 64-bits of each integer are stored as an eight-byte value at the cursor position with the least significant byte stored first. For example,
binary format w 7810179016327718216

will return the string HelloTcl

W
This form is the same as w except that it stores one or more one or more 64-bit integers in big-endian byte order in the output string. For example,
binary format Wc 4785469626960341345 110

will return the string BigEndian

m
This form (mnemonically the mirror of w) is the same as w and W except that it stores the 64-bit integers in the output string in the native byte order of the machine where the Tcl script is running. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
f
This form is the same as c except that it stores one or more one or more single-precision floating point numbers in the machine's native representation in the output string. This representation is not portable across architectures, so it should not be used to communicate floating point numbers across the network. The size of a floating point number may vary across architectures, so the number of bytes that are generated may vary. If the value overflows the machine's native representation, then the value of FLT_MAX as defined by the system will be used instead. Because Tcl uses double-precision floating point numbers internally, there may be some loss of precision in the conversion to single-precision. For example, on a Windows system running on an Intel Pentium processor,
binary format f2 {1.6 3.4}

will return a string equivalent to \xcd\xcc\xcc\x3f\x9a\x99\x59\x40.

r
This form (mnemonically real) is the same as f except that it stores the single-precision floating point numbers in little-endian order. This conversion only produces meaningful output when used on machines which use the IEEE floating point representation (very common, but not universal.)
R
This form is the same as r except that it stores the single-precision floating point numbers in big-endian order.
d
This form is the same as f except that it stores one or more one or more double-precision floating point numbers in the machine's native representation in the output string. For example, on a Windows system running on an Intel Pentium processor,
binary format d1 {1.6}

will return a string equivalent to \x9a\x99\x99\x99\x99\x99\xf9\x3f.

q
This form (mnemonically the mirror of d) is the same as d except that it stores the double-precision floating point numbers in little-endian order. This conversion only produces meaningful output when used on machines which use the IEEE floating point representation (very common, but not universal.)
Q
This form is the same as q except that it stores the double-precision floating point numbers in big-endian order.
x
Stores count null bytes in the output string. If count is not specified, stores one null byte. If count is *, generates an error. This type does not consume an argument. For example,
binary format a3xa3x2a3 abc def ghi

will return a string equivalent to abc\000def\000\000ghi.

X
Moves the cursor back count bytes in the output string. If count is * or is larger than the current cursor position, then the cursor is positioned at location 0 so that the next byte stored will be the first byte in the result string. If count is omitted then the cursor is moved back one byte. This type does not consume an argument. For example,
binary format a3X*a3X2a3 abc def ghi

will return dghi.

@
Moves the cursor to the absolute location in the output string specified by count. Position 0 refers to the first byte in the output string. If count refers to a position beyond the last byte stored so far, then null bytes will be placed in the uninitialized locations and the cursor will be placed at the specified location. If count is *, then the cursor is moved to the current end of the output string. If count is omitted, then an error will be generated. This type does not consume an argument. For example,
binary format a5@2a1@*a3@10a1 abcde f ghi j

will return abfdeghi\000\000j.

The binary scan command parses fields from a binary string, returning the number of conversions performed. String gives the input bytes to be parsed (one byte per character, and characters not representable as a byte have their high bits chopped) and formatString indicates how to parse it. Each varName gives the name of a variable; when a field is scanned from string the result is assigned to the corresponding variable.

As with binary format, the formatString consists of a sequence of zero or more field specifiers separated by zero or more spaces. Each field specifier is a single type character followed by an optional flag character followed by an optional numeric count. Most field specifiers consume one argument to obtain the variable into which the scanned values should be placed. The type character specifies how the binary data is to be interpreted. The count typically indicates how many items of the specified type are taken from the data. If present, the count is a non-negative decimal integer or *, which normally indicates that all of the remaining items in the data are to be used. If there are not enough bytes left after the current cursor position to satisfy the current field specifier, then the corresponding variable is left untouched and binary scan returns immediately with the number of variables that were set. If there are not enough arguments for all of the fields in the format string that consume arguments, then an error is generated. The flag character "u" may be given to cause some types to be read as unsigned values. The flag is accepted for all field types but is ignored for non-integer fields.

A similar example as with binary format should explain the relation between field specifiers and arguments in case of the binary scan subcommand:

binary scan $bytes s3s first second

This command (provided the binary string in the variable bytes is long enough) assigns a list of three integers to the variable first and assigns a single value to the variable second. If bytes contains fewer than 8 bytes (i.e. four 2-byte integers), no assignment to second will be made, and if bytes contains fewer than 6 bytes (i.e. three 2-byte integers), no assignment to first will be made. Hence:

puts [binary scan abcdefg s3s first second]
puts $first
puts $second

will print (assuming neither variable is set previously):

1
25185 25699 26213
can't read "second": no such variable

It is important to note that the c, s, and S (and i and I on 64bit systems) will be scanned into long data size values. In doing this, values that have their high bit set (0x80 for chars, 0x8000 for shorts, 0x80000000 for ints), will be sign extended. Thus the following will occur:

set signShort [binary format s1 0x8000]
binary scan $signShort s1 val; # val == 0xFFFF8000

If you require unsigned values you can include the "u" flag character following the field type. For example, to read an unsigned short value:

set signShort [binary format s1 0x8000]
binary scan $signShort su1 val; # val == 0x00008000

Each type-count pair moves an imaginary cursor through the binary data, reading bytes from the current position. The cursor is initially at position 0 at the beginning of the data. The type may be any one of the following characters:

a
The data is a byte string of length count. If count is *, then all of the remaining bytes in string will be scanned into the variable. If count is omitted, then one byte will be scanned. All bytes scanned will be interpreted as being characters in the range \u0000-\u00ff so the encoding convertfrom command will be needed if the string is not a binary string or a string encoded in ISO 8859-1. For example,
binary scan abcde\000fghi a6a10 var1 var2

will return 1 with the string equivalent to abcde\000 stored in var1 and var2 left unmodified, and

binary scan \342\202\254 a* var1
set var2 [encoding convertfrom utf-8 $var1]

will store a Euro-currency character in var2.

A
This form is the same as a, except trailing blanks and nulls are stripped from the scanned value before it is stored in the variable. For example,
binary scan "abc efghi  \000" A* var1

will return 1 with abc efghi stored in var1.

b
The data is turned into a string of count binary digits in low-to-high order represented as a sequence of "1" and "0" characters. The data bytes are scanned in first to last order with the bits being taken in low-to-high order within each byte. Any extra bits in the last byte are ignored. If count is *, then all of the remaining bits in string will be scanned. If count is omitted, then one bit will be scanned. For example,
binary scan \x07\x87\x05 b5b* var1 var2

will return 2 with 11100 stored in var1 and 1110000110100000 stored in var2.

B
This form is the same as b, except the bits are taken in high-to-low order within each byte. For example,
binary scan \x70\x87\x05 B5B* var1 var2

will return 2 with 01110 stored in var1 and 1000011100000101 stored in var2.

H
The data is turned into a string of count hexadecimal digits in high-to-low order represented as a sequence of characters in the set "0123456789abcdef". The data bytes are scanned in first to last order with the hex digits being taken in high-to-low order within each byte. Any extra bits in the last byte are ignored. If count is *, then all of the remaining hex digits in string will be scanned. If count is omitted, then one hex digit will be scanned. For example,
binary scan \x07\xC6\x05\x1f\x34 H3H* var1 var2

will return 2 with 07c stored in var1 and 051f34 stored in var2.

h
This form is the same as H, except the digits are taken in reverse (low-to-high) order within each byte. For example,
binary scan \x07\x86\x05\x12\x34 h3h* var1 var2

will return 2 with 706 stored in var1 and 502143 stored in var2.

Note that most code that wishes to parse the hexadecimal digits from multiple bytes in order should use the H format.
c
The data is turned into count 8-bit signed integers and stored in the corresponding variable as a list. If count is *, then all of the remaining bytes in string will be scanned. If count is omitted, then one 8-bit integer will be scanned. For example,
binary scan \x07\x86\x05 c2c* var1 var2

will return 2 with 7 -122 stored in var1 and 5 stored in var2. Note that the integers returned are signed, but they can be converted to unsigned 8-bit quantities using an expression like:

set num [expr { $num & 0xff }]
s
The data is interpreted as count 16-bit signed integers represented in little-endian byte order. The integers are stored in the corresponding variable as a list. If count is *, then all of the remaining bytes in string will be scanned. If count is omitted, then one 16-bit integer will be scanned. For example,
binary scan \x05\x00\x07\x00\xf0\xff s2s* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2. Note that the integers returned are signed, but they can be converted to unsigned 16-bit quantities using an expression like:

set num [expr { $num & 0xffff }]
S
This form is the same as s except that the data is interpreted as count 16-bit signed integers represented in big-endian byte order.
t
The data is interpreted as count 16-bit signed integers represented in the native byte order of the machine running the Tcl script. It is otherwise identical to s and S. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
i
The data is interpreted as count 32-bit signed integers represented in little-endian byte order. The integers are stored in the corresponding variable as a list. If count is *, then all of the remaining bytes in string will be scanned. If count is omitted, then one 32-bit integer will be scanned. For example,
set str \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff
binary scan $str i2i* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2. Note that the integers returned are signed, but they can be converted to unsigned 32-bit quantities using an expression like:

set num [expr { $num & 0xffffffff }]
I
This form is the same as I except that the data is interpreted as count 32-bit signed integers represented in big-endian byte order. For example,
set str \x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0
binary scan $str I2I* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2.

n
The data is interpreted as count 32-bit signed integers represented in the native byte order of the machine running the Tcl script. It is otherwise identical to i and I. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
w
The data is interpreted as count 64-bit signed integers represented in little-endian byte order. The integers are stored in the corresponding variable as a list. If count is *, then all of the remaining bytes in string will be scanned. If count is omitted, then one 64-bit integer will be scanned. For example,
set str \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff
binary scan $str wi* var1 var2

will return 2 with 30064771077 stored in var1 and -16 stored in var2. Note that the integers returned are signed and cannot be represented by Tcl as unsigned values.

W
This form is the same as w except that the data is interpreted as count 64-bit signed integers represented in big-endian byte order.
m
The data is interpreted as count 64-bit signed integers represented in the native byte order of the machine running the Tcl script. It is otherwise identical to w and W. To determine what the native byte order of the machine is, refer to the byteOrder element of the tcl_platform array.
f
The data is interpreted as count single-precision floating point numbers in the machine's native representation. The floating point numbers are stored in the corresponding variable as a list. If count is *, then all of the remaining bytes in string will be scanned. If count is omitted, then one single-precision floating point number will be scanned. The size of a floating point number may vary across architectures, so the number of bytes that are scanned may vary. If the data does not represent a valid floating point number, the resulting value is undefined and compiler dependent.
r
This form is the same as f except that the data is interpreted as count single-precision floating point number in little-endian order. This conversion is not portable to the minority of systems not using IEEE floating point representations.
R
This form is the same as f except that the data is interpreted as count single-precision floating point number in big-endian order. This conversion is not portable to the minority of systems not using IEEE floating point representations.
d
This form is the same as f except that the data is interpreted as count double-precision floating point numbers in the machine's native representation.
q
This form is the same as d except that the data is interpreted as count double-precision floating point number in little-endian order. This conversion is not portable to the minority of systems not using IEEE floating point representations.
Q
This form is the same as d except that the data is interpreted as count double-precision floating point number in big-endian order. This conversion is not portable to the minority of systems not using IEEE floating point representations.
x
Moves the cursor forward count bytes in string. If count is * or is larger than the number of bytes after the current cursor position, then the cursor is positioned after the last byte in string. If count is omitted, then the cursor is moved forward one byte. Note that this type does not consume an argument.
X
Moves the cursor back count bytes in string. If count is * or is larger than the current cursor position, then the cursor is positioned at location 0 so that the next byte scanned will be the first byte in string. If count is omitted then the cursor is moved back one byte. Note that this type does not consume an argument.
@
Moves the cursor to the absolute location in the data string specified by count. Note that position 0 refers to the first byte in string. If count refers to a position beyond the end of string, then the cursor is positioned after the last byte. If count is omitted, then an error will be generated.

文章评论1条评论)

登录后参与讨论

coyoo 2013-5-29 16:12

用命令: binary fromat I $arg可以将"arg"转换成32-bit,Big-endian格式的二进制数,需要注意的是TCL所有的操作数默认都是字符格式,所以在进行运算或者数据存取的需要进行格式转换.
相关推荐阅读
coyoo 2024-12-03 12:20
比较器检测模拟脉冲说明(四)
概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解...
coyoo 2024-11-16 13:54
不同ADC采样同一前端模拟信号时转换用时差异分析
概述 同一组前端模拟信号接入由不同型号ADC组成的模数转换电路时,采样后在FPGA中发现采样用时差异较大。本文主要分析这个时间差异形成的原因,并记录该差异产生对系统造成的影响。系统数字化简介 项目前端...
coyoo 2024-11-10 13:04
ALTERA Cyclone 10器件的使用-7:FPGA片内RAM资源利用率思考
概述 项目使用的FPGA目标器件为Cyclone 10 GX系列规模最大一颗料,由于功能升级增加了功能模块更多,发现器件片内RAM不够使用了。为了探索片内RAM使用的利用率问题,从代码RTL级与编译软...
coyoo 2024-11-10 12:30
转知乎:幽灵般的人体成像技术-PET
幽灵般的人体成像技术——PET - 知乎...
coyoo 2024-11-09 10:26
AD9633默认情况下调试记录(二)
概述 所谓默认情况,即如器件手册中图2所标示那样。对应AD9633的调试,除了涉及到ADC自身,还需要兼顾前端驱动器,系统中AD9633驱动器使用了差分运算放大器,这里不在赘述,笔者已有相关文章论述。...
coyoo 2024-11-07 10:40
AD9633默认情况下调试记录(一)
AD9633在旁路SPI接口时如何在FPGA逻辑中确认字边界概述 AD9633与FPGA之间的LVDS接口初调试,ADC可以通过SPI接口对其内部寄存器进行各项配置。在SPI接口未调通之前,对LVDS...
我要评论
1
16
关闭 站长推荐上一条 /2 下一条