矩阵分解 (decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同
,可分为三种矩阵分解法:1)三角分解法 (Triangular Factorization),2)QR
分解法 (QR Factorization),3)奇异值分 解法 (Singular
Value Decompostion)。
(1) 三角分解法
三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵 或是排列(permuted) 的上三角形矩阵 和一个
下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求
反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同
的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。
我们举以下二个矩阵为例:
利用三角分解法可将A和B二矩阵分别拆解为上下三角形矩阵
注意B分解的矩阵得到的第一个矩阵[LB]是排列的下三角形矩阵,如果第二、三列互换,则此变成完全的下
三角形矩阵。
以MATLAB函数计算上述的LU分解法,其语法为[L,U]=lu(A),其中L代表下三角形矩阵U代表上三角形矩阵。 我们来看一个例子。
>> A = [1 2 -1, -2 -5 3; -1 -3 0];
B=[1 3 2; -2 -6 1; 2 5 7];
>> [L1,U1] = lu(A); [L2,U2] = lu(B);
>> L1; U1
L1 = % 注意这个矩阵L1和之前的[LA]不相同
-0.5 1 0
1 0 0
0.5 1 1
U1 = % 注意这个矩阵U1和之前的[UA]不相同
-2 -5 3
0 -0.5 0.5
0 0 -2
>> L2; U2
L2 = % 注意这个矩阵L2和之前的[LB]不相同
-0.5 0 1
1 0 0
-1 1 0
U2 = % 注意这个矩阵U2和之前的[UB]不相同
-2 -6 1
0 -1 8
0 0 2.5
(2) QR分解法
QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵。还记得先前我们介绍的正规正交矩阵Q满足的条件吗!所以称为QR分解法与此正规正交矩阵的通用符号Q有关。
MATLAB以qr函数来执行QR分解法, 其语法为[Q,R]=qr(A),其中Q代表正规正交矩阵,而R代表上三角形矩
阵。此外,原矩阵A不必为正方矩阵;如果矩阵A大小为,则矩阵Q大小为,矩阵R大小为。
(3) 奇异值分解法
奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩。
文章评论(0条评论)
登录后参与讨论