资料
  • 资料
  • 专题
自然场景中Logo标识检测训练数据生成方法研究
推荐星级:
时间:2019-06-22
大小:4.78MB
阅读数:289
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
深度学习方法在图像内容检测中取得良好效果并得到广泛应用。自然场景中Logo(标识)图案的检测具有很强的商业和社会需求,但获取其适用于深度学习方法的训练数据却并不容易。为解决上述问题,针对自然场景图片中包含Logo的检测和识别,本文提出一种生成对应训练数据集的合成方法。根据简单的输入和参数设置,该方法能够自动生成大量带有特定Logo并且符合自然场景特征的图片以及相应标注数据。这些生成数据可用于自然场景Logo检测识别的训练数据集,降低了深度学习网络模型的训练成本。使用本文方法合成的数据集训练的深度网络模型,可在FlickrLogos-32标准测试数据集上达到63.9%的平均准确率(mAP),接近使用大量真实人工标注数据的效果,体现了本文方法的有效性。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书