资料
  • 资料
  • 专题
改进贝叶斯动态线性模型在车流量预测中的应用
推荐星级:
时间:2019-06-21
大小:1.47MB
阅读数:375
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
贝叶斯动态线性模型(DLM)是一种状态空间模型,在时间序列分析和建模中有大量应用。传统DLM模型的参数确定是由人工分析时间序列的平稳性和季节、趋势、回归特征得到模型参数的,比较依赖专家经验。本文提出用期望最大化(EM)算法从交通流数据中学习出DLM的关键参数,然后用学习出的模型对下一时刻的车流量进行预测。实验表明该模型和方法应用在车流量的预测中取得了较好的效果。相对于自回归求和移动平均(ARIMA)模型和传统季节-趋势-回归组合DLM,所提方法在平均绝对误差和平均相对百分比误差两个指标上均有较大提高。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书