资料
  • 资料
  • 专题
基于距离最大化和缺失数据聚类的填充算法
推荐星级:
类别: 其他
时间:2019-06-22
大小:1.57MB
阅读数:197
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
通过对基于K-means聚类的缺失值填充算法的改进,文中提出了基于距离最大化和缺失数据聚类的填充算法。首先,针对原填充算法需要提前输入聚类个数这一缺点,设计了改进的K-means聚类算法:使用数据间的最大距离确定聚类中心,自动产生聚类个数,提高聚类效果;其次,对聚类的距离函数进行改进,采用部分距离度量方式,改进后的算法可以对含有缺失值的记录进行聚类,简化原填充算法步骤。通过对STUDENT ALCOHOL CONSUMPTION数据集的实验,结果证明了该算法能够在提高效率的同时,有效地填充缺失数据。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书