The time and frequency domains are alternative ways of representing signals. The Fourier
transform is the mathematical relationship between these two representations. If a signal is
modified in one domain, it will also be changed in the other domain, although usually not in the
same way. For example, it was shown in the last chapter that convolving time domain signals
results in their frequency spectra being multiplied. Other mathematical operations, such as
addition, scaling and shifting, also have a matching operation in the opposite domain. These
relationships are called properties of the Fourier Transform, how a mathematical change in one
domain results in a mathematical change in the other domain. CHAPTER
Fourier Transform Properties
10
The time and frequency domains are alternative ways of representing signals. The Fourier
transform is the mathematical relationship between these two representations. If a signal is
modified in one domain, it will also be changed in the other domain, although usually not in the
same way. For example, it was shown in the last chapter that convolving time domain signals
results in their frequency spectra being multiplied. Other mathematical operations, such as
addition, scaling and shifting, also have a matching operation in the opposite domain. These
relationships are called properties of the Fourier Transform, how a mathematical change in one
domain results in a mathematical change in the other domain.
Linearity o……