<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
STM32时钟控制RCC探究
RTC是STM32单片机的脉搏,是单片机的驱动源。使用任何一个外设都必须打开相应的时钟。这样的好处就是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。
STM32单片机的时钟可以由以下3个时钟源提供:
1、HSI:高速内部时钟信号 stm32单片机内带的时钟 (<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />8M频率) 精度较差
2、HSE:高速外部时钟信号 精度高 来源(1)HSE外部晶体/陶瓷谐振器(晶振) (2)HSE用户外部时钟
3、LSE:低速外部晶体 32.768kHz 主要提供一个精确的时钟源 一般作为RTC时钟使用
stm32单片机的将时钟信号(例如HSE)经过分频或倍频(PLL)后,得到系统时钟,系统时钟经过分频,产生外设所使用的时钟。
本文有个图,可以直观的浏览单片机整个时钟架构。
了解stm32单片机的时钟,下面就是如何使用,我举个使用HSE时钟的例子。
设置时钟流程:
1、将RCC寄存器重新设置为默认值 RCC_DeInit
2、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟 RCC_HCLKConfig;
5、设置高速AHB时钟 RCC_PCLK2Config;
6、设置低速速AHB时钟 RCC_PCLK1Config
7、设置PLL RCC_PLLConfig
8、打开PLL RCC_PLLCmd(ENABLE);
9、等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟 RCC_SYSCLKConfig
11、判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。
⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。
对于单片机系统来说,CPU和总线以及外设的时钟设置是非常重要的,因为没有时钟就没有时序,组合电路能干什么想必各位心里都清楚。其实时钟的学习这部分应该提前一些,但由于一开始时间比较短,有些急于求成,所以直接使用了万利给的例程,姑且跳过了这一步。介于下面我计划要学习的任务都涉及到兆级的高速传输,例如全速USB,DMA等等,所以不能再忽略时钟啦,必须要仔细研究一下。
我学习RCC的参考资料:
技术文档0427及其中文翻译版STM32F10xxx_Library_Manual_ChineseV2的第十五章和RM0008_CH参考手册。
准备知识:
片上总线标准种类繁多,而由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。二者分别适用于高速与相对低速设备的连接。
由于时钟是一个由内而外的东西,具体设置要从寄存器开始。
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct
{
vu32 CR;
vu32 CFGR;
vu32 CIR;
vu32 APB2RSTR;
vu32 APB1RSTR;
vu32 AHBENR;
vu32 APB2ENR;
vu32 APB1ENR;
vu32 BDCR;
vu32 CSR;
} RCC_TypeDef;
这些寄存器的具体定义和使用方式参见芯片手册,在此不赘述,因为C语言的开发可以不和他们直接打交道,当然如果能够加以理解和记忆,无疑是百利而无一害。
相信细心的朋友早就发现板子上只有8Mhz的晶振,而增强型最高工作频率为72Mhz,显然需要用PLL倍频9倍,这些设置都需要在初始化阶段完成。为了方便说明,我借用一下例程的RCC设置函数,并用中文注释的形式加以说明:
/*******************************************************************************
* Function Name : Set_System
* Description : Configures Main system clocks & power
* Input : None.
* Return : None.
*******************************************************************************/
//在此指出上面的注释头应该是复制过来的,写错了...不过没关系,反正没参数需要说明,重要的是函数体。
static void RCC_Config(void)
{
/* 这里是重置了RCC的设置,类似寄存器复位 */
RCC_DeInit();
/* 使能外部高速晶振 */
RCC_HSEConfig(RCC_HSE_ON);
/* 等待高速晶振稳定 */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if (HSEStartUpStatus == SUCCESS)
{
/* 使能flash预读取缓冲区 */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* 令Flash处于等待状态,2是针对高频时钟的,这两句跟RCC没直接关系,可以暂且略过 */
FLASH_SetLatency(FLASH_Latency_2);
/* HCLK = SYSCLK 设置高速总线时钟=系统时钟*/
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK 设置低速总线2时钟=高速总线时钟*/
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 设置低速总线1的时钟=高速时钟的二分频*/
RCC_PCLK1Config(RCC_HCLK_Div2);
/* ADCCLK = PCLK2/6 设置ADC外设时钟=低速总线2时钟的六分频*/
RCC_ADCCLKConfig(RCC_PCLK2_Div6);
/* Set PLL clock output to 72MHz using HSE (8MHz) as entry clock */
//上面这句例程中缺失了,但却很关键
/* 利用锁相环讲外部8Mhz晶振9倍频到72Mhz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL 使能锁相环*/
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready 等待锁相环输出稳定*/
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{}
/* Select PLL as system clock source 将锁相环输出设置为系统时钟 */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source 等待校验成功*/
while (RCC_GetSYSCLKSource() != 0x08)
{}
}
/* Enable FSMC, GPIOD, GPIOE, GPIOF, GPIOG and AFIO clocks */
//使能外围接口总线时钟,注意各外设的隶属情况,不同芯片的分配不同,到时候查手册就可以
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
RCC_APB2Periph_AFIO, ENABLE);
}
由上述程序可以看出系统时钟的设定是比较复杂的,外设越多,需要考虑的因素就越多。同时这种设定也是有规律可循的,设定参数也是有顺序规范的,这是应用中应当注意的,例如PLL的设定需要在使能之前,一旦PLL使能后参数不可更改。
经过此番设置后,由于我的电路板上是8Mhz晶振,所以系统时钟为72Mhz,高速总线和低速总线2都为72Mhz,低速总线1为36Mhz,ADC时钟为12Mhz,USB时钟经过1.5分频设置就可以实现48Mhz的数据传输。
一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。然后考虑内部总线和外部总线,最后考虑外设的时钟信号。遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则有点儿类似PCB制图的规范化要求,在这里也一样
文章评论(0条评论)
登录后参与讨论