资料
  • 资料
  • 专题
一种基于邻域距离的分类方法研究
推荐星级:
类别: 其他
时间:2019-05-27
大小:1.91MB
阅读数:1228
上传用户:royalark_912907664
查看他发布的资源
下载次数
1
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
邻域粗糙集模型中,随着邻域半径的增长,基于多数原则的邻域分类器容易对未知样本的类别产生误判。为缓解该问题,在邻域分类器的基础上,采用了最小平均距离的思想,设计了一种基于邻域距离的分类器,即邻域距离分类器。邻域距离分类器通过邻域粗糙集模型识别出待测样本的邻域空间,然后采用最小平均距离的判别方式来代替多数投票原则,最后找出邻域空间内与待测样本有最小平均距离的类别作为预测的类别标记。在6组UCI数据集上的实验结果表明:1)与邻域分类器相比,所提邻域距离分类器在较大的邻域半径下获得了较为满意的分类结果;2)在进行属性约简之后,与邻域分类器相比,邻域距离分类器依然能在较大的邻域半径下获得较高的分类精度。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书