资料
  • 资料
  • 专题
PCA-SVM模式分类方法在心电信号分析中的应用
推荐星级:
时间:2019-06-21
大小:1.49MB
阅读数:266
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
为了给医生在心血管疾病诊断方面提供更精确的参考依据,提高心血管疾病诊断效率,提出了一种基于PCA-SVM模式分类的心电信号分析方法。通过对麻省理工心率失常数据库中8类心搏心电数据分别运用支持向量机以及PCA-SVM模式分类方法进行分析处理,比较最终的分类准确率。发现当支持向量机选择线性核函数时,SVM的分类准确率为97.812 5%,PCA-SVM的分类准确率为99.0625%,PCA-SVM相对于SVM的分类准确率更高,能够满足心血管疾病临床诊断需求。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书