为了给医生在心血管疾病诊断方面提供更精确的参考依据,提高心血管疾病诊断效率,提出了一种基于PCA-SVM模式分类的心电信号分析方法。通过对麻省理工心率失常数据库中8类心搏心电数据分别运用支持向量机以及PCA-SVM模式分类方法进行分析处理,比较最终的分类准确率。发现当支持向量机选择线性核函数时,SVM的分类准确率为97.812 5%,PCA-SVM的分类准确率为99.0625%,PCA-SVM相对于SVM的分类准确率更高,能够满足心血管疾病临床诊断需求。