资料
  • 资料
  • 专题
利用DCNN融合特征对遥感图像进行场景分类
推荐星级:
类别: 其他
时间:2019-06-22
大小:1.66MB
阅读数:208
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
为了解决在遥感图像场景分类问题中传统的底层或中间级视觉特征无法充分描述复杂场景的问题,提出了采用第三种感知网络(Inspection-v3)、快速特征嵌入的卷积神经网络(CaffeNet)、OverFeatL 3种深度卷积神经网络(DCNN)提取的融合特征进行遥感图像场景分类方法。通过利用利用3种DCNN提取的归一化的融合特征进行分类实验,在UCMLU(University of California Merced Land Use) 数据集上获得了97.01%的准确率。融合特征的分类实验证明,不同结构DCNN的融合特征能更充分的表达场景的语义信息。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书