摘 要:光谱分析中,干扰信号的存在直接影响所建分析模型的质量。基于信号和干扰的不同特性,提出了一种扣除背景和噪声干扰的新方法――小波多尺度正交校正(WMOSC)法。首先将原始光谱进行小波变换(DWT),消除噪声及背景信息,然后采用正交信号校正(OSC)滤除与待测组分浓度无关的全部信息。与单纯的小波变换及正交信号校正相比,WMOSC能有效地扣除背景和噪声干扰,使模型具有更强的抗干扰能力,提高了模型的预测精度。利用该方法对牛奶样品的近红外光谱进行处理,采用偏最小二乘法建立校正模型,其牛奶中脂肪、蛋白质和乳糖的预测均方根误差(RMSEP)分别为0.1016%,0.0871%和0.1107%。实验结果表明该方法能有效地去除干扰,保留有用信息。[著者文摘]……