基于小波分析与BP神经网络的西湖叶绿素a浓度预测模型
时间:2020-01-03
大小:471.79KB
阅读数:118
查看他发布的资源
资料介绍
摘 要:小波神经网络是基于小波分析理论所构造的一种分层的、多分辨率的新型人工神经网络。选择合适的小波基和分解尺度对西湖水体Chl―a进行小波分析,将原序列分解成一个低频概貌分量和多个高频细节分量,再通过BP网络建立西湖叶绿素a浓度短期预测模型Ⅰ和模型Ⅱ。模型Ⅰ将小波分析去除高频细节信息后的低频概貌部分作为输入变量预测Chl-a含量;模型Ⅱ则对低频部分和高频部分分别进行预测,最后汇总各分网络输出得到最终结果。对确证集预测时,模型Ⅰ的平均误差为4.4%,模型Ⅱ仅为1.9%,且误差范围较模型Ⅰ小,表明模型Ⅱ具有较高的预测精度和稳定性。最后运用模型Ⅱ进行水质预测,预测值与实际值的平均相对误差为6.4%,并选取3号点(中山码头)进行模型的泛化,平均相对误差为6.9%,取得了较理想的预测效果,说明小波神经网络能成功预测西湖水体中Chl―a含量的短期变化趋势,为西湖水质管理提供科学依据。[著者文摘]……
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或
联系我们 删除。