首页
论坛
电子技术基础
模拟技术
可编程器件
嵌入式系统与MCU
工程师职场
最新帖子
问答
版主申请
每月抽奖
商城免费换礼
社区有奖活动
博客
下载
评测
视频
文库
芯语
资源
2024国际航空电子大会
2024国际 AIoT 生态发展大会
3D IC 设计和Chiplet资料下载
车载总线测试和解码方案
新能源汽车三电测试技术中心
在线研讨会
EE直播间
小测验
白皮书
行业及技术活动
杂志免费订阅
免费在线工具
厂商资源中心
论坛
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
登录|注册
登录
最新发表
推荐阅读
明星博主
原创博文
年度排行
博文排行
博文评论
FPGA/CPLD
MCU/ 嵌入式
模拟
电源/新能源
测试测量
通信
智能手机
处理器与DSP
PCB
汽车电子
消费电子
智能硬件
物联网
软件与OS
采购与分销
供应链管理
工程师职场
EDA/ IP/ 设计与制造
无人机
机器人/ AI
医疗电子
工业电子
管理
写博文
朱玉龙
明星博主
修改
文章:
1271
阅读:
4180048
评论:
3228
赞:
11710
和汽车电子行业的工程师们一起交流、探讨、思考
好友
私信
个人主页
和汽车电子行业的工程师们一起交流、探讨、思考
文章
1271
原创
2
阅读
4180048
评论
3228
赞
11710
原创
功率Mosfet参数介绍
2009-9-9 14:37
7774
16
24
分类:
模拟
这个阶段在做Mosfet方面的计算,看到有翻译的文章非常不错,链接如下:
http://www.powersystems.eet-china.com/ART_8800530758_2400003_TA_fb5ff51f_5.HTM
http://www.powersystems.eet-china.com/ART_8800538311_2400003_TA_3aace9bb_2.HTM
美中不足的是,感觉很凌乱,一撮一撮的,大概整理了一下,发在博客上,如果原译者看到,请见谅引用文章的描述,有适当删减。
第一部分 最大额定参数
最大额定参数,所有数值取得条件(Ta=25℃)
VDSS 最大漏-源电压
在栅源短接,漏-源额定电压(VDSS)是指漏-源未发生雪崩击穿前所能施加的最大电压。根据温度的不同,实际雪崩击穿电压可能低于额定VDSS。关于V(BR)DSS的详细描述请参见静电学特性.
VGS 最大栅源电压
VGS额定电压是栅源两极间可以施加的最大电压。设定该额定电压的主要目的是防止电压过高导致的栅氧化层损伤。实际栅氧化层可承受的电压远高于额定电压,但是会随制造工艺的不同而改变,因此保持VGS在额定电压以内可以保证应用的可靠性。
ID - 连续漏电流
ID定义为芯片在最大额定结温TJ(max)下,管表面温度在25℃或者更高温度下,可允许的最大连续直流电流。该参数为结与管壳之间额定热阻RθJC和管壳温度的函数:
ID中并不包含开关损耗,并且实际使用时保持管表面温度在25℃(Tcase)也很难。因此,硬开关应用中实际开关电流通常小于ID 额定值@ TC = 25℃的一半,通常在1/3~1/4。补充,如果采用热阻JA的话可以估算出特定温度下的ID,这个值更有现实意义。
IDM -脉冲漏极电流
该参数反映了器件可以处理的脉冲电流的高低,脉冲电流要远高于连续的直流电流。定义IDM的目的在于:线的欧姆区。对于一定的栅-源电压,MOSFET导通后,存在最大的漏极电流。如图所示,对于给定的一个栅-源电压,如果工作点位于线性区域内,漏极电流的增大会提高漏-源电压,由此增大导通损耗。长时间工作在大功率之下,将导致器件失效。因此,在典型栅极驱动电压下,需要将额定IDM设定在区域之下。区域的分界点在Vgs和曲线相交点。
因此需要设定电流密度上限,防止芯片温度过高而烧毁。这本质上是为了防止过高电流流经封装引线,因为在某些情况下,整个芯片上最“薄弱的连接”不是芯片,而是封装引线。
考虑到热效应对于IDM的限制,温度的升高依赖于脉冲宽度,脉冲间的时间间隔,散热状况,RDS(on)以及脉冲电流的波形和幅度。单纯满足脉冲电流不超出IDM上限并不能保证结温不超过最大允许值。可以参考热性能与机械性能中关于瞬时热阻的讨论,来估计脉冲电流下结温的情况。
PD -容许沟道总功耗
容许沟道总功耗标定了器件可以消散的最大功耗,可以表示为最大结温和管壳温度为25℃时热阻的函数。
TJ, TSTG-工作温度和存储环境温度的范围
这两个参数标定了器件工作和存储环境所允许的结温区间。设定这样的温度范围是为了满足器件最短工作寿命的要求。如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。
EAS-单脉冲雪崩击穿能量
如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。雪崩击穿能量标定了器件可以容忍的瞬时过冲电压的安全值,其依赖于雪崩击穿需要消散的能量。
定义额定雪崩击穿能量的器件通常也会定义额定EAS。额定雪崩击穿能量与额定UIS具有相似的意义。EAS标定了器件可以安全吸收反向雪崩击穿能量的高低。
L是电感值,iD为电感上流过的电流峰值,其会突然转换为测量器件的漏极电流。电感上产生的电压超过MOSFET击穿电压后,将导致雪崩击穿。雪崩击穿发生时,即使 MOSFET处于关断状态,电感上的电流同样会流过MOSFET器件。电感上所储存的能量与杂散电感上存储,由MOSFET消散的能量类似。
MOSFET并联后,不同器件之间的击穿电压很难完全相同。通常情况是:某个器件率先发生雪崩击穿,随后所有的雪崩击穿电流(能量)都从该器件流过。
EAR -重复雪崩能量
重复雪崩能量已经成为“工业标准”,但是在没有设定频率,其它损耗以及冷却量的情况下,该参数没有任何意义。散热(冷却)状况经常制约着重复雪崩能量。对于雪崩击穿所产生的能量高低也很难预测。
额定EAR的真实意义在于标定了器件所能承受的反复雪崩击穿能量。该定义的前提条件是:不对频率做任何限制,从而器件不会过热,这对于任何可能发生雪崩击穿的器件都是现实的。在验证器件设计的过程中,最好可以测量处于工作状态的器件或者热沉的温度,来观察MOSFET器件是否存在过热情况,特别是对于可能发生雪崩击穿的器件。
IAR - 雪崩击穿电流
对于某些器件,雪崩击穿过程中芯片上电流集边的倾向要求对雪崩电流IAR进行限制。这样,雪崩电流变成雪崩击穿能量规格的“精细阐述”;其揭示了器件真正的能力。
第二部分 静态电特性
V(BR)DSS:漏-源击穿电压(破坏电压)
V(BR)DSS(有时候叫做BVDSS)是指在特定的温度和栅源短接情况下,流过漏极电流达到一个特定值时的漏源电压。这种情况下的漏源电压为雪崩击穿电压。
V(BR)DSS是正温度系数,温度低时V(BR)DSS小于25℃时的漏源电压的最大额定值。在-50℃, V(BR)DSS大约是25℃时最大漏源额定电压的90%。
VGS(th),
VGS(off)
:阈值电压
VGS(th)是指加的栅源电压能使漏极开始有电流,或关断MOSFET时电流消失时的电压,测试的条件(漏极电流,漏源电压,结温)也是有规格的。正常情况下,所有的MOS栅极器件的阈值电压都会有所不同。因此,VGS(th)的变化范围是规定好的。VGS(th)是负温度系数,当温度上升时,MOSFET将会在比较低的栅源电压下开启。
RDS(on):导通电阻
RDS(on)是指在特定的漏电流(通常为ID电流的一半)、栅源电压和25℃的情况下测得的漏-源电阻。
IDSS:零栅压漏极电流
IDSS是指在当栅源电压为零时,在特定的漏源电压下的漏源之间泄漏电流。既然泄漏电流随着温度的增加而增大,IDSS在室温和高温下都有规定。漏电流造成的功耗可以用IDSS乘以漏源之间的电压计算,通常这部分功耗可以忽略不计。
IGSS ―栅源漏电流
IGSS是指在特定的栅源电压情况下流过栅极的漏电流。
第三部分 动态电特性
Ciss :输入电容
将漏源短接,用交流信号测得的栅极和源极之间的电容就是输入电容。Ciss是由栅漏电容Cgd和栅源电容Cgs并联而成,或者Ciss = Cgs +Cgd。当输入电容充电致阈值电压时器件才能开启,放电致一定值时器件才可以关断。因此驱动电路和Ciss对器件的开启和关断延时有着直接的影响。
Coss :输出电容
将栅源短接,用交流信号测得的漏极和源极之间的电容就是输出电容。Coss是由漏源电容Cds和栅漏电容Cgd并联而成,或者Coss = Cds +Cgd对于软开关的应用,Coss非常重要,因为它可能引起电路的谐振
Crss :反向传输电容
在源极接地的情况下,测得的漏极和栅极之间的电容为反向传输电容。反向传输电容等同于栅漏电容。Cres =Cgd,反向传输电容也常叫做米勒电容,对于开关的上升和下降时间来说是其中一个重要的参数,他还影响这关断延时时间。电容随着漏源电压的增加而减小,尤其是输出电容和反向传输电容。
Qgs, Qgd, 和 Qg :栅电荷
栅电荷值反应存储在端子间电容上的电荷,既然开关的瞬间,电容上的电荷随电压的变化而变化,所以设计栅驱动电路时经常要考虑栅电荷的影响。
Qgs从0电荷开始到第一个拐点处,Qgd是从第一个拐点到第二个拐点之间部分(也叫做“米勒”电荷),Qg是从0点到vGS等于一个特定的驱动电压的部分。
漏电流和漏源电压的变化对栅电荷值影响比较小,而且栅电荷不随温度的变化。测试条件是规定好的。栅电荷的曲线图体现在数据表中,包括固定漏电流和变化漏源电压情况下所对应的栅电荷变化曲线。在图中平台电压VGS(pl)随着电流的增大增加的比较小(随着电流的降低也会降低)。平台电压也正比于阈值电压,所以不同的阈值电压将会产生不同的平台电压。
下面这个图更加详细,应用一下:
td(on) :导通延时时间
导通延时时间是从当栅源电压上升到10%栅驱动电压时到漏电流升到规定电流的10%时所经历的时间。
td(off) :关断延时时间
关断延时时间是从当栅源电压下降到90%栅驱动电压时到漏电流降至规定电流的90%时所经历的时间。这显示电流传输到负载之前所经历的延迟。
tr :上升时间
上升时间是漏极电流从10%上升到90%所经历的时间。
tf :下降时间
下降时间是漏极电流从90%下降到10%所经历的时间。
参考文献:
Fairchild_AN9010_MOSFET Basics.pdf
Renesus_Power MOS FET Application Note.pdf
本文多有整理,如有不妥,请尽快告知。
写原创有奖励!2024面包板原创奖励正在进行中
点赞(
16
)
收藏
分享到:
上一篇:
工程师前路在哪里?
下一篇:
共享资料
PARTNER CONTENT
换一换>
更多>
概伦电子:以开放心态共绘EDA产业新蓝图
概伦电子
2024-12-30
SK海力士开发出适用于AI数据中心的高容量固态硬盘‘PS1012 U.2’
SK海力士
2024-12-18
SK海力士将在CES2025亮相‘全方位面向AI的存储器供应商’的新蓝图
SK海力士
2025-01-03
文章评论
(
8
条评论)
登录
后参与讨论
您需要登录后才可以评论
登录
|
立即注册
发布
用户1484429
2010-9-29 10:13
GOOD!
回复
用户1054960
2010-1-23 09:01
我对这个也很感兴趣,谢谢分享啊! 这是一块古老的技术,但是一块巨大的领域,IGBT/IPM,PMSM电机控制等是这个链条里的主要利润点! 走在前面的总是机会很多的,如果还在等待国家的标准出来才做还可能就没有多少机会了,有战略眼光的公司总司在引领标准,最后制定标准! 风险与机遇总是并存的!
回复
朱玉龙
2009-10-7 21:46
而且可能有保护策略检测这个情况,使器件在短时间内承受这个状态,而不是常态的
回复
朱玉龙
2009-10-7 21:46
最坏分析是器件最坏的环境条件下,器件的参数分布和运行情况分析,实际能达到这个最坏的条件可能是不存在的(环境和负载都是最差的情况概率非常非常低)
回复
朱玉龙
2009-10-7 21:45
可靠性是正常应力(电压和环境)条件下器件失效的概率
回复
朱玉龙
2009-10-7 21:44
打了半天的字没打出来,可靠性和最坏分析是两个概念
回复
用户897015
2009-10-7 21:20
像你这样说,感觉最大值应该以75A为标准理论才是可靠的,选择时为保证绝对可靠应该以这个为标准才合适!
回复
朱玉龙
2009-9-12 00:30
我是这样理解的,Datasheet给的25度的是实验数据,后面的那个是经过计算的最大温度内可通过的Id,是根据不同封装有不同的热阻,不同的热阻有不同的最大散发功率,根据这个来测试得到的数据。不管如何,还是要在计算中验证的,前面的参数只是帮助选择,判断标准还是当最大电流加载的时候,结温不超过临界值。
回复
用户897015
2009-9-12 00:01
Id 在DATASHEET中一般有两个值。如IRFB4310ZPBF,在25度的时候,Silicon limited是127A,而Package limited 是75A,这两个怎么去理解?Id到底是多少?
回复
查看更多评论
相关推荐阅读
朱玉龙
2019-06-13 11:48
放开限购的对新能源汽车的影响
买车和生娃一样,有时候是需要看收入和信心的,随着汽车产业进入调整期,ZF层面对于这个支柱产业的政策性的帮助业随之而来,《推动重点消费品更新升级 畅通资源 循环利用实施方案(2019-2020年)》这份...
朱玉龙
2019-06-13 11:45
如何看待这一波全球车企的人员收缩?
2019-05-26 在国内保就业的前提下,谈国内的问题是很敏感的。但是在全球...
朱玉龙
2018-11-01 14:25
比亚迪把新能源汽车卖哪里去了?
2018-11-01今年是汽车行业整体的转折点,我们在考较和推敲特斯拉的时候,国内的比亚迪今年的量也是非常厉害,特别是这三个月7、8、9三月新能源汽车的销量都超过了传统车,占了大头。从数字来看,这个新...
朱玉龙
2018-11-01 14:23
电池温度传感器再思考
2018-10-16 随着锂电池的能量密度的提升和安全裕度的降低,核心的问题是要知道锂电池单体本身的温度。实际上,我们现在已经了解大部分的电池滥用试验选择都和温度有关系,在不同的温度下做出来的条件并不...
朱玉龙
2018-11-01 14:20
新能源汽车产业链的利润格局
2018-10-13 从当前的形势来看,我们到了讨论动力电池产业和电动汽车厂家们的博弈问题了,在一个健康的市场里面,是存在一个比较好的零整关系,是存在一个博弈过程,能够建立均衡,各方都有相对合理的利润...
朱玉龙
2018-11-01 14:11
Model 3 电芯的分析
2018-09-24这个也是综合不少的材料来看的,主要是看电芯的一些情况。这里我不知道A2mac1找的哪样的实验室来做这个事情,从整个分析还是挺全的,包括电芯测试,电芯内的材料分析,这些东西全套下来,...
朱玉龙
明星博主
修改
文章:
1271
阅读:
4180048
评论:
3228
赞:
11710
和汽车电子行业的工程师们一起交流、探讨、思考
好友
私信
个人主页
和汽车电子行业的工程师们一起交流、探讨、思考
文章
1271
原创
2
阅读
4180048
评论
3228
赞
11710
个人文集
汽车电子
(165)
微型电动车
(5)
读书笔记
(48)
职业闲谈
(40)
新能源汽车
(69)
听书
(11)
最新评论
更多
写的好,很适用,学习和参考
开发工匠 ...
评论博文
2025-1-13
简单又实用的教程:RTC时钟使用指南~ ...
写的好,好产品,海信了不起
开发工匠 ...
评论博文
2025-1-11
海信发布全球首台116英寸RGB-Mini LED电视 ...
物也有命
自做自受 ...
评论博文
2025-1-9
富士通环保行为准则之切身感受 ...
最新
博文
汽车电子丨PCBA加工焊接方式 ...
国产S系列数字源表的发展史 ...
基于光偏振与光学调制实现白光干涉相 ...
资料下载
本周热帖
晶体管电路设计-铃木雅臣(上).pdf ...
基于51单片机的万能遥控器设计论文 ...
基于51单片机的酒精浓度检测仪设计论 ...
基于51单片机的简易计算器设计任务书 ...
基于51单片机的简易计算器设计开题报 ...
交流电路中的欧姆定律
ESD对于电子器件的破坏机理分析 ...
emWin应用开发——基于GD32
LED失效分析重要手段——光热分布检测 ...
晶振在电路中的作用
最新资讯
芯语最新
不可靠!这7家美国企业被商务部列入清 ...
继美光、三星、Kioxia,SK Hynix计划 ...
实测特斯拉“迄今为止最强FSD“:何小 ...
寒武纪:历史首次单季度转正,引发热 ...
深圳一机器人街头散步成网红,简直太 ...
新能源汽车VCU电控开发——能量回收模 ...
辰显光电主导制定的国家标准获批立项 ...
总投资5亿!全国首条8.6代金属掩膜版 ...
三星显示等向合作伙伴提前支付28亿! ...
合洁科技电子洁净工程:千级集成电路 ...
EE直播间
更多
第三代功率半导体器件测试解决方案
直播时间: 03月06日 10:00
在线研讨会
更多
重塑机器人未来:揭秘创新芯片解决方案的颠覆力量
多路有光·精准不凡——KSW-SGM01模拟信号源发布会
迈来芯Triaxis® 3D磁传感器:汽车安全应用的优选方案
适用于安全连接的新一代PIC32CK SG/GC系列单片机
热门
推荐
构建AI未来,Arm计算平台无处不在
如何提升高压系统的实时性能?
如何增强电动汽车的实时控制能力?
如何增强能源基础设施的实时控制?
我要评论
8
16
分享到微信
分享到微博
分享到QQ
点击右上角,分享到朋友圈
我知道啦
请使用浏览器分享功能
我知道啦
关闭
站长推荐
/3
工程师写总结,送示波器、稳压电源、螺丝刀!
分享你的:职业生涯中故事、2024年年终总结、工作中的小故事,丰富多样的礼品等你哦!
面包板社区有奖活动汇总楼
1. DIY赢大奖!2. 写原创,有奖励!3.参与话题,奖励E币!4. 免费申领:开发板试用、书籍试读...
电子工程师DIY来分享,赢大疆无人机、小米手机、NAS存储、万用表 ...
展示您的 DIY 电子设计作品,社区将有丰富奖励送给您!
首页
论坛
电子技术基础
模拟技术
可编程器件
嵌入式系统与MCU
工程师职场
最新帖子
问答
版主申请
每月抽奖
商城免费换礼
社区有奖活动
博客
下载
评测
视频
文库
芯语
资源
2024国际航空电子大会
2024国际 AIoT 生态发展大会
3D IC 设计和Chiplet资料下载
车载总线测试和解码方案
新能源汽车三电测试技术中心
在线研讨会
EE直播间
小测验
白皮书
行业及技术活动
杂志免费订阅
免费在线工具
厂商资源中心
帖子
博文
返回顶部
×
用户1484429 2010-9-29 10:13
用户1054960 2010-1-23 09:01
朱玉龙 2009-10-7 21:46
朱玉龙 2009-10-7 21:46
朱玉龙 2009-10-7 21:45
朱玉龙 2009-10-7 21:44
用户897015 2009-10-7 21:20
朱玉龙 2009-9-12 00:30
用户897015 2009-9-12 00:01