资料
  • 资料
  • 专题
隐依存森林模型的学习与评估算法
推荐星级:
类别: 其他
时间:2019-06-20
大小:1.45MB
阅读数:248
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
隐依存森林模型是一种新的构建在随机变量上动态的依存结构概率图模型,不同于别的概率图模型,它没有复杂的结构学习,只需要参数学习。然而,由于其准确的partition function 的计算复杂度很高,隐依存森林模型的参数学习依旧是一个十分具有挑战的任务。在这篇文章中,我们比较了多种参数学习算法,采用了忽略或者近似partition function等策略。此外,我们还提出了一种估计partition function的算法。我们的实验表明:1)我们的学习算法比之前的隐依存森林模型学习算法取得更好的效果。2) 我们的估计算法是准确的。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书