资料
  • 资料
  • 专题
基于HMM模型的网络社区推荐技术
推荐星级:
类别: 其他
时间:2019-06-22
大小:1.37MB
阅读数:473
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
由于网络社区相关数据具有海量、强噪音、实时变化性大等特点。因此,如何满足网络用户高质量和实时性的社区推荐需求,使得用户获得准确的推荐服务成为备受关注的研究热点。本文结合Web使用挖掘和内容挖掘的思想,提出了一种基于隐马尔可夫模型即HMM模型来描述用户访问社区模式的挖掘模型,并运用该模型来获取用户访问社区的具有共性的模式序列,经验证,该技术能够发现用户访问社区的迁移模式,并反映用户的访问偏好,从而将某社区内部成员共同感兴趣的新社区推荐给该社区的其他成员。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
PARTNER CONTENT
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书