由于网络社区相关数据具有海量、强噪音、实时变化性大等特点。因此,如何满足网络用户高质量和实时性的社区推荐需求,使得用户获得准确的推荐服务成为备受关注的研究热点。本文结合Web使用挖掘和内容挖掘的思想,提出了一种基于隐马尔可夫模型即HMM模型来描述用户访问社区模式的挖掘模型,并运用该模型来获取用户访问社区的具有共性的模式序列,经验证,该技术能够发现用户访问社区的迁移模式,并反映用户的访问偏好,从而将某社区内部成员共同感兴趣的新社区推荐给该社区的其他成员。