摘要: 针对模拟电路存在较多故障模式的诊断中易出现分类混叠的问题,提出一种小波分析和分层决策的故障识别方法.首先用小波变换方法提取电路的两种故障特征,模糊C均值算法分析故障特征数据的分布特性,以决策树的形式分割各故障子类.通过对决策树节点特征的优化选择,使各故障子类的区分得以最大化.最后按照决策树结构建立分级诊断的故障决策系统,分别以支持向量机和神经网络作为树节点分类器,有效地提高了故障的识别率.该方法应用于高通滤波器电路的故障识别,正确率高于99%,比经典支持向量机多分类方法具有更好的诊断性能.……