极零相消在实际电路中的应用
概述
极零相消也被称为极零补偿(PZC, Pole-Zero Cancellation/Compensation),最近针对PZC电路有过几轮讨论,个人也有些思考,前面也有一篇短小篇幅的总结。
有时间打算稍微展开探讨一下PZC电路,至少使得对其理解更清晰,了解为什么要使用PZC,哪些地方(或节点)需要或适合插入PZC电路。
如图1所示,为滨松使用的PZC电路。MPPC的输出成分分为快成分(fast)和慢成分,但是需要更加方便获得时间信息的时候,用户就希望仅仅测试MPPC输出的快成分,所以滨松就推荐了图1所示的PZC来对MPPC输出信号进行调理。
图1:滨松给出的PZC电路示意图
上述电路的关键是如何选择电容C和电阻R1,具体原则滨松在给出上述PZC参考电路的时候并未给出,这个与前端驱动的MPPC有关,由于不同的MPPC,其输出电容不同,估计也是由此滨松并未给出固定的C和R1参考值,这个需要用户自行根据选用的MPPC具体型号进行选择。
MPPC各参数之间联系图
图2来自滨松官网,展示MPPC各参数之间联系图。蓝色标签是指用户可选可调的外部条件,中间紫色标签是指受外部条件直接或间接影响的性能参数。
图2:滨松MPPC各参数之间联系图
对于用户来说,感光面积和像素尺寸在项目开始前或项目启动前期就已经确定好了的,所以它们对于当前我们要讨论的PZC电路,在此忽略(并非对PZC电路没影响,而是选型之后影响已经固化了)。所以PZC电路在设计和调试的时候,主要面临如何配合温度和电压的变化。
在实际应用中用户需要在图2中间紫色标签中找寻到最佳的平衡点。在找寻最优平衡点的过程中,PZC电路可能就需要依据其它参数的改变而动态进行调整。上面提到了PZC可以将MPPC的快成分“分离”出来,进行时间信息处理,下节探讨在实际电路中PZC的其它用途。
PZC电路在实际应用中的作用
滨松给出的PZC主要是分离快成分,实际应用中我们对快慢成分都施加了PZC模块。这个模块在我们的电路中的主要作用就是“抑制暗脉冲”。
暗脉冲来自于暗电流(dark crrent),MPPC的暗电流会产生暗计数(dark count),即在正常工作偏置电压下,将MPPC放置在黑暗环境中,并且没有辐射源照射的情况下,由于Si材料内载流子的热激发等原因引起的计数。单位时间内发生1 p.e.及以上的波形计数定义为暗计数率。MPPC常温下通常在几百kHz,如图3所示为滨松给出的测量截图。
图3:示波器进行的暗计数测量
注意几个概念,p.e.是photon equivalent的缩写,意为光子等效。0.5 p.e.指雪崩脉冲宽度为1个光子引发雪崩脉冲幅度的0.5倍。设置0.5 p.e.的阈值就是记录所有大于或等于1个光子电子信号。上图显示的大部分应该都是单光子信号脉冲,偶尔可能会有多光子重叠引起的多光子脉冲信号。如图4所示,某型滨松MPPC中不同尺寸中的像素数量。所以多光子重叠的概率还是有的。
图4:同系列MPPC不同尺寸中像素数量
MPPC的暗电流要比PMT大很多,二者不是一个数量级,所以两者使用的系统中前端电路也有不同。比如是否采用PZC电路。暗电流对于系统来说,其实就是噪声,前端电路设计需要采取各种措施来抑制噪声。
我们也采取类似图3所示的测试,如图5所示。图3示波器时间刻度是50us,图5时间刻度是200ns。
图5:暗脉冲测量
图5中满屏,也即2us时间中至少能看到10个明显的暗脉冲。请注意,图5除了是测量暗脉冲以外,同时测量验证了PZC电路的效果,即示波器通道2展示测量结果。我们发现这个10个暗脉冲基本都被消除了,只有2号、3号和4号脉冲还有残留。
图6给出了有用信号和暗脉冲一同存在的场景以及经过PZC处理前后的测试结果(示波器通道1测量PZC处理之前,示波器通道4测量PZC处理之后),我们发现暗脉冲的密度很大,严重干扰了信号基线。从图中可以看到信号基线由于大量暗脉冲的存在,产生明显的“晃动”。这种晃动幅度虽然不大,但是在紧密测量应用中会带来比较大的麻烦。
所以这个PZC电路就像粉底的作用一样,可以用来“抹平”信号基线,使得基线尽量平滑,否则测量的时候很容易产生误触发。另外,前端信号送入下一级可能还需要进行放大处理,这些暗脉冲如果未经处理一起送入下一级也会带来问题。
图6:未经PZC处理的信号
作者: coyoo, 来源:面包板社区
链接: https://mbb.eet-china.com/blog/uid-me-1010859.html
版权声明:本文为博主原创,未经本人允许,禁止转载!
丙丁先生 2024-3-20 06:14
调试繁琐