原创 信号完整性(一):PCB走线中途容性负载反射

2013-4-3 11:38 5868 22 40 分类: 消费电子

很多时候,PCB走线中途会经过过孔、测试点焊盘、短的stub线等,都存在寄生电容,必然对信号造成影响。走线中途的电容对信号的影响要从发射端和接受端两个方面分析,对起点和终点都有影响。


    首先按看一下对信号发射端的影响。当一个快速上升的阶跃信号到达电容时,电容快速充电,充电电流和信号电压上升快慢有关,充电电流公式为:I=C*dV/dt。电容量越大,充电电流越大,信号上升时间越快,dt越小,同样使充电电流越大。


    我们知道,信号的反射与信号感受到的阻抗变化有关,因此为了分析,我们看一下,电容引起的阻抗变化。在电容开始充电的初期,阻抗表示为:

17.jpg



这里dV实际上是阶跃信号电压变化,dt为信号上升时间,电容阻抗公式变为:

16.jpg



从这个公式中,我们可以得到一个很重要的信息,当阶跃信号施加到电容两端的初期,电容的阻抗与信号上升时间和本身的电容量有关。


    通常在电容充电初期,阻抗很小,小于走线的特性阻抗。信号在电容处发生负反射,这个负电压信号和原信号叠加,使得发射端的信号产生下冲,引起发射端信号的非单调性。


    对于接收端,信号到达接收端后,发生正反射,反射回来的信号到达电容位置,那个样发生负反射,反射回接收端的负反射电压同样使接收端信号产生下冲。


    为了使反射噪声小于电压摆幅的5%(这种情况对信号影响可以容忍),阻抗变化必须小于10%。那么电容阻抗应该控制在多少?电容的阻抗表现为一个并联阻抗,我们可以用并联阻抗公式和反射系数公式来确定它的范围。对于这种并联阻抗,我们希望电容阻抗越大越好。假设电容阻抗是PCB走线特性阻抗的k倍,根据并联阻抗公式得到电容处信号感受到的阻抗为:


15.jpg


阻抗变化率为:

14.jpg

,即

13.jpg
7.gif
 
,也就是说,根据这种理想的计算,电容的阻抗至少要是PCB特性阻抗的9倍以上。实际上,随着电容的充电,电容的阻抗不断增加,并不是一直保持最低阻抗,另外,每一个器件还会有寄生电感,使阻抗增加。因此这个9倍限制可以放宽。在下边的讨论中假设这个限制是5倍。



    有了阻抗的指标,我们就可以确定能容忍多大的电容量。电路板上50欧姆特性阻抗很常见,我就用50欧姆来计算。


12.jpg



得出:

 

11.jpg


即在这种情况下,如果信号上升时间为1ns,那么电容量要小于4皮法。反之,如果电容量为4皮法,则信号上升时间最快为1ns,如果信号上升时间为0.5ns,这个4皮法的电容就会产生问题。


    这里的计算只不过是为了说明电容的影响,实际电路中情况十分复杂,需要考虑的因素更多,因此这里计算是否精确没有实际意义。关键是要通过这种计算理解电容是如何影响信号的。我们对电路板上每一个因素的影响都有一个感性认识后,就能为设计提供必要的指导,出现问题就知道如何去分析。精确的评估需要用软件来仿真。


总结:

1 PCB走线中途容性负载使发射端信号产生下冲,接收端信号也会产生下冲。

2 能容忍的电容量和信号上升时间有关,信号上升时间越快,能容忍的电容量越小。

 

于博士讲信号完整性系列

信号完整性(一):PCB走线中途容性负载反射

信号完整性(二):接收端容性负载的反射

信号完整性(三):PCB走线宽度变化产生的反射

信号完整性(四):信号振铃是怎么产生的

信号完整性(五):信号反射

PARTNER CONTENT

文章评论18条评论)

登录后参与讨论

用户1826196 2016-1-23 21:14

本人初学看得不是很懂,推荐一下,互相交流,希望能弄明白

用户1406868 2014-1-13 15:50

讲的很好,谢谢!

用户1602177 2013-5-8 20:07

同学,拿其它同学的东西要记得留出处哦~~本文首发于电子工程专辑的论坛,http://forum.eet-cn.com/FORUM_POST_10012_1200251425_0.HTM,已积累了不少评论,对评论感兴趣的请点击上面的链接

用户1694373 2013-5-8 10:13

目前很火··

用户1624075 2013-4-19 18:20

推荐,值得初学者看

用户1525219 2013-4-18 08:59

学习了,秀好

用户1116435 2013-4-10 14:48

把抽象的东西描述的很生动,很贴切。有收获。

用户1447659 2013-4-8 13:11

硬件设计都会遇到

用户1670484 2013-4-8 13:00

mark。谢谢分享。

用户1664440 2013-4-6 21:28

很好,很强大!
相关推荐阅读
用户1687377 2013-08-19 15:11
对信号完整性培训的一点感触
  我本人以前就做过多年的信号完整性工程师,现在自己开公司做SI设计咨询,前几年也经常做一些培训(给一家培训公司做讲师),我就从一个讲师的角度来说说我的一点感触! 从多次的培训需求征集结果...
用户1687377 2013-05-22 16:47
走线的参考平面在哪
  走线的参考平面在哪? www.sig007.com   很多人对于PCB走线的参考平面感到迷惑,经常有人问:对于内层走线,如果走线一侧是VCC,另一侧是GND,那么哪个是参考平...
用户1687377 2013-05-07 10:34
信号完整性研究(四):信号上升时间与带宽
在前文中我提到过,要重视信号上升时间,很多信号完整性问题都是由信号上升时间短引起的。本文就谈谈一个基础概念:信号上升时间和信号带宽的关系。 对于数字电路,输出的通常是方波信号。方波的上升边沿非常...
用户1687377 2013-05-06 10:32
信号完整性研究(三):重视信号上升时间
信号的上升时间,对于理解信号完整性问题至关重要,高速pcb设计中的绝大多数问题都和它有关,你必须对他足够重视。 信号上升时间并不是信号从低电平上升到高电平所经历的时间,而是其中的一部分。业界对它...
用户1687377 2013-05-02 10:23
信号完整性研究(二):何时会遇到信号完整性问题
多年前,在我开始研究信号完整性问题时也曾经有过这样的疑问,随着对信号完整性理解的深入,便没有再仔细考虑。后来在产品开发过程中,朋友、同事经常向我提出这一问题。有些公司制作复杂电路板时,硬件总也调不...
用户1687377 2013-04-28 11:48
信号完整性研究(一):什么是信号完整性?
如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的...
EE直播间
更多
我要评论
18
22
关闭 站长推荐上一条 /3 下一条