在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知 所措。本书从算法和Python 语言实现的角度,帮助读者认识机器学习。 书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来 展示所讨论的算法的使用原则。全书共分为7 章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。 本书主要针对想提高机器学习技能的Python 开发人员,帮助他们解决某一特定的项 目或是提升相关的技能。