资料
  • 资料
  • 专题
基于卷积神经网络的RGB-D图片分类
推荐星级:
类别: 其他
时间:2019-06-20
大小:1.65MB
阅读数:370
上传用户:royalark_912907664
查看他发布的资源
下载次数
0
所需E币
3
ebi
新用户注册即送 300 E币
更多E币赚取方法,请查看
close
资料介绍
针对基于卷积神经网络(CNNs)的物体分类问题,文中旨在探索一种最佳的输入组合,使得分类效果达到最佳。本文首先介绍了相关的RGB-D数据集,然后在该数据集中提取部分图片组成训练、验证和测试集。然后对这些选取的图片进行预处理,包括去除RGB-D图片的背景,和补齐深度(D)图片的深度信息。利用深度信息图和转换到不同色彩空间下的图片预先训练多个CNNs。由于每一组彩色图和深度图的内容都是相同的,他们共享相似的特征,这些预先训练的网络可以互相取长补短,本文将这些CNNs的概率向量对应元素相加并再次归一化,用这个概率向量作为最终分类的依据。实验结果表明,在本文的CNNs结构下,RGB信息、D信息、RGB-D信息三者的组合能够达到最高的分类准确率95.0%,比起仅使用其中任何一种高出至少5%。对于其他的色彩空间,预先训练的网络无法收敛,侧面印证了基于图片的深度学习工作大多使用RGB色彩空间的合理性。
版权说明:本资料由用户提供并上传,仅用于学习交流;若内容存在侵权,请进行举报,或 联系我们 删除。
相关评论 (下载后评价送E币 我要评论)
没有更多评论了
  • 可能感兴趣
  • 关注本资料的网友还下载了
  • 技术白皮书