原创 硕凯电子分享:半导体放电管TSS的工作原理

2015-1-29 14:44 937 5 5 分类: 消费电子

半导体放电管作为开关型的过压器件一般都是并联在电路上,器件不动作时,阻值最高,可视为开路,对电路几乎没有影响。当有异常脉冲时,阻值瞬间下降,瞬间释放电流。当异常高压消失,其恢复到高阻状态,电路正常工作。除了这个大众皆知的工作原理外,小硕还为大家整理了半导体放电管在工作时阻断区、雪崩区、负阻区和低阻通态区的反应状态。

 
 

反向工作状态(K端接正、A端接负)

正向工作状态(A端接正、K端接负)

         ①阻断区:此时器件两端所加电压低于击穿电压,J1正偏,J2为反偏,电流很小,起了阻挡电流的作用,外加电压几乎都加在了J2上。

         ②雪崩区:当外加电压上升接近J2结的雪崩击穿电压时,反偏J2结空间电荷区宽度扩展的同时,结区内电场大大增强,从而引起倍增效应加强。于是,通过J2结的电流突然增大,并使流过器件的电流也增大,这就是电压增加,电流急剧增加的雪崩区。 

        ③负阻区:当外加电压增加到大于VBO时,由于雪崩倍增效应而产生了大量的电子空穴对,此时这些载流子在强场的作用下,电子进入n2区,空穴进入p1区,由于不能很快复合而分别堆积起来,使J2空间电荷区变窄。由此使p1区电位升高、n2区电位下降,起了抵消外电压的作用。随着J2结区电场的减弱,降落在J2结上的外电压将下降,雪崩效应也随之减弱。另一方面,J1、J3结的正向电压却有所增加,注入增强,造成通过J2结的电流增大,于是出现了电流增加电压减小的负阻现象。

         ④低阻通态区:如上所述,雪崩效应使J2结两侧形成空穴和电子的积累,造成J2结反偏电压减小;同时又使J1、J3结注入增强,电流增大,因而J2结两侧继续有电荷积累,结电压不断下降。当电压下降到雪崩倍增完全停止,结电压全部被抵消后,J2结两侧仍有空穴和电子积累时,J2结变为正偏。此时,J1、J2和J3全部为正偏,器件可以通过大电流,因而处于低阻通态区。完全导通时,其伏安特性曲线与整流元件相似。【更多半导体放电管的相关信息请关注硕凯电子的官方微信:socay2004,或者直接访问硕凯电子的官网】

 

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
5
关闭 站长推荐上一条 /3 下一条